BTE WÄGE-Broschüre

Rund um das Wägen von Kraftfahrzeugen

nicht nur im Rahmen der Verkehrsüberwachung

Ausgabe 2019

BTE – GEWERKSCHAFT MESS- UND EICHWESEN

verbunden in Technik & Eichung

ISSN 2699-1195
Inhaltsverzeichnis

Vorwort ... 3
Überblick ... 4
Impressum ... 4

Erläuterungen der Redaktion (Bitte unbedingt lesen!) .. 4

Teil 1 ... 5

Abschnitt 1 – gesetzliche Vorschriften und Regelermittlungsausschuss 5
Auszüge der gesetzlichen Vorschriften .. 5
Mess- und Eichgesetz (MessEG) .. 6
Mess- und Eichverordnung (MessEV) ... 11
Kennzeichnung der geeichten Waagen nach der alten Richtlinie 2009/23/EG (NAWID) 11
Anlage 8 MessEV – Kennzeichen der Eichung ... 17
Zivilprozessordnung .. 18

Regelermittlungsausschuss (REA) ... 19
Ermittelte Regeln und Erkenntnisse des Regelermittlungsausschusses nach § 46 MessEG

Verwenden von Messwerten § 25 Nr. 7 MessEV ... 20

Abschnitt 2 – Leitfaden für das Wägen von Fahrzeugen zur amtlichen Überwachung des öffentlichen Verkehrs (Vorschlag) ... 21
Vorbemerkungen .. 21
1 Wägen auf Straßenfahrzeugwaagen ... 21
2 Grundsätzliches beim Wägen .. 21
2.1 Begriffsbestimmungen .. 21
2.2 Besonderheiten beim achsweisen Wägen ... 22
3 Achsweises statisches Wägen auf Straßenfahrzeugwaagen 22
4 Zeitgleiches statisches Wägen auf Straßenfahrzeugwaagen und Radlastwaagen („Kombinierte Wägung“) ... 22
5 Achsweises statisches Wägen mit Radlastwaagen zur Verkehrsüberwachung 23
6 Achsweises dynamisches Wägen mit Radlastwaagen zur Verkehrsüberwachung 23

Teil 2 .. 24

Handlungshilfe „Wägen“ .. 25

Teil 3 .. 28

Abschnitt 1 – Wägen mit Radlastwaagen – Was ist zu beachten! 28
Vorgaben beim Wägen mit Radlastwaagen .. 28
Datenspeicher und Radlastwaagen .. 29
Zusammenhang zwischen Anhängelast und Stützlast ... 30

Abschnitt 2 – Verkehrsfehlergrenzen / Fehlergrenzen – eine Erläuterung mit Beispielen 32

Abschnitt 3 – Wägen mit Fahrzeugwaagen – was ist zu beachten! 37
Das Wägen von Kraftfahrzeugen zur Verkehrskontrolle auf Fahrzeugwaagen 37
1 Allgemeine Grundsätze .. 37
2 Wägearten .. 37
2.1 Wägung des kompletten Fahrzeuges (Einzellägenwägung) .. 37
2.2 Achsweise Wägung ... 38
3 Unzulässige Wägearten .. 39
 a) Seitenweises Wägen .. 39
 b) Wägebereich über- bzw. Unterschreitung .. 39
 c) Unzulässiger Wägewert .. 39
 d) Flüssiges Wägungsgut ... 39
Anhang 1 – Protokollvorlage ... 39
Anhang 2 – Wäge-Beispiele ... 40

Feststellung von Überladungen bei Schwertransportfahrzeugen durch Überprüfung der Drücke in den hydraulischen Achssystemen ... 43
Eigengewicht von Systembauteilen für Schwertransportauflieger 45
Inhaltsverzeichnis, Vorwort

Gewerkschaft Mess- und Eichwesen BTE

Teil 3 – Abschnitt 4 ... 46
Möglichkeiten zur Bestimmung der Stützlast von Einachsanhängern ... 46
Mindestlast bei Nettowerten, die aus Brutto- und Tarawägung errechnet werden ... 50

Teil 4 .. 51
Bin ich fit für Wägeaufgaben? – Fragen und Antworten – .. 51
Entwicklung neuer Wägemethoden ... 53

Indexverzeichnis ... 58
Änderungen/Ergänzungen gegenüber der Wäge-Broschüre 2017.2 .. 59
Fotonachweis .. 59
Erläuterungen zur Benutzung des PDF-Dokumentes .. 59

Bis Ausgabe 2017.2 veröffentlichter „Leitfaden für achsweises statisches Wägen im geschäftlichen und amtlichen Verkehr“ zum Vergleich .. 60
Fotos Radlastwaagen .. 20, 34–36, 62
Fotos Fahrzeugwaagen .. 42

Liebe Leserinnen und Leser,

Technik und Gesetze ändern sich, sodass es immer wieder Neuauflagen gab und geben wird. Im vorliegenden Nachfolger, der „Wäge-Broschüre“, sind diesen Änderungen nun Rechnung getragen worden, indem viele Passagen aktualisiert und neue Themen aufgegriffen wurden.

Ziel ist es weiterhin, diese Broschüre nicht nur für die Verwender von Messgeräten als Arbeitsunterstützung zur Verfügung zu stellen, sondern auch bei Gerichten zu etablieren und das Wägen rechtssicherer zu gestalten. Die Broschüre ist dauerhaft über das Internet abrufbar und hat die Internationale Standardnummer ISSN 2699-1195.

Die Seiten des Regelermittlungsausschusses werden nur bei inhaltlichen Änderungen aktualisiert. Die letzte aktuelle Quellenangabe ist auf der PTB-REA-Seite nachzulesen (siehe Seite 20).

Der Regelermittlungsausschuss (REA) hat seine Sichtweise zu § 25 Nr. 7 MessEV – Ausnahmen bei Werten für Messgrößen – dargelegt (siehe Seite 20).

Falls kleine Änderungen in der Wägebroschüre 2019 nötig sind, werden zukünftig an die Jahreszahl auf der Titelseite ein Bindestrech und eine Ziffer angehängt (zum Beispiel 2019-1). Das Datum der Aktualisierung finden Sie auf Seite 59 mit der Angabe der entsprechenden Änderungen.

Sollten sich bei aller Sorgfalt, Fehler eingeschlichen haben, teilen Sie uns bitte diese mit.

Bedanken möchten wir uns bei allen, die zum Gelingen der BTE Wäge-Broschüre beigetragen haben und zukünftig beitragen.

Im Namen des BTE-Wäge-Teams

Lars Forche – Ewald Schmidt
Überblick:

Wann haben Verwender die Vorschriften des MessEG zu beachten?
 a) Das MessEG muss von allen Verwendern von Messgeräten beachtet werden, die Messgeräte im geschäftlichen oder amtlichen Verkehr oder im öffentlichen Interesse verwenden.
 b) Dasselbe gilt auch für die Verwendung von Messwerten.

Beispiele für die Verwendung von Messgeräten, bezogen auf die Wägung von Kraftfahrzeugen mit und ohne Anhänger bei Verkehrskontrollen, sind:

Fahrzeugwaagen / Radlastwaagen / Stützlastwaagen

Welche wesentlichen Vorgaben bringen MessEG und MessEV mit sich?
1. Korrekte Verwendung von Messgeräten (§ 23 Abs. 1 Nr. 2 MessEV)
 Messgeräte müssen so aufgestellt, angeschlossen, gehandhabt und gewartet werden, dass die Richtigkeit der Messung und die zuverlässige Ablesung der Anzeige gewährleistet wird.
2. Messrichtigkeit während der Verwendung (§ 31 Abs. 2 Nr. 1 MessEG)
 Der Verwender eines Messgerätes muss die Einhaltung der wesentlichen Anforderungen während der Verwendung sicherstellen. Außerdem muss der Verwender sicherstellen, dass die Verkehrseffehlergrenze stets eingehalten wird.
3. Verwendung von geeichten Messgeräten (§ 31 Abs. 2 Nr. 3 und § 37 Abs. 1 MessEG)
 Der Verwender hat sicherzustellen, dass Messgeräte nicht ungeeicht verwendet werden. Es dürfen die vorgeschriebenen Kennzeichen nicht unkenntlich, entwertet oder vom Messgerät entfernt sein.
4. Pflichten bei der Verwendung (§ 23 MessEV)
 Das Messgerät muss für den Verwendungszweck über die erforderliche Genauigkeit verfügen, für die vorgesehenen Umgebungsbedingungen geeignet und innerhalb des zulässigen Messbereiches eingesetzt werden. Die Richtigkeit der Messung muss gewährleistet sein, die vorgeschriebenen Informationen (z.B. Bedienungsanleitung) müssen verfügbar sein und Verkehrseffehlergrenzen dürfen nicht zum eigenen Vorteil ausgenutzt werden.

Impressum
Herausgeber:
Bundesvorstand der Gewerkschaft Mess- und Eichwesen (BTE)
im dbb beamtenbund und tarifunion
Beethovenstraße 44 (Geschäftsstelle)
86438 Kissing
Telefon (08233) 60994
E-Mail: bte@bte.dbb.de
Internet: www.bte.dbb.de

BTE-Redaktion:
Lars Forche
(Verantwortlicher Redakteur)
Auf der Höhe 4
50354 Hürth
Mobil: (0174) 9 16 31 96
E-Mail: redaktion@bte.dbb.de
7. ergänzte Auflage 2019
Fotonachweis auf Seite 59

Veröffentlicht am 16. Dezember 2019
Geändert/eingeügt: Seite 23 – 5b) / 5h) am 7. Januar 2020

Erläuterungen der Redaktion – Bitte unbedingt lesen!

Sollte Text in gestrichelten Rahmen stehen, so handelt es sich um Verlinkungen auf Seiten im Dokument oder Webseiten – siehe Inhaltsverzeichnis, Seitennumerierung ...

1. **Gesetzliche Grundlagen**

Übersicht der zitierten Passagen:

Mess- und Eichgesetz (MessEG)

- § 1 Anwendungsbereich des Gesetzes
- § 3 Messgerätespezifische Begriffsbestimmungen
- § 31 Anforderungen an das Verwenden von Messgeräten
- § 32 Anzeigepflicht
- § 33 Anforderungen an das Verwenden von Messwerten
- § 37 Eichung und Eichfrist
- § 38 Verspätete Eichungen
- § 41 Verordnungsermächtigung
- § 46 Regelermittlungsausschuss
- § 60 Bußgeldvorschriften

Mess- und Eichverordnung (MessEV)

- § 1 Anwendungsbereich für Messgeräte und Teilgeräte
- § 5 Vom Anwendungsbereich ausgenommene Verwendungen
- § 13 Gemeinsame Vorschriften für Kennzeichnungen und ...
- § 14 Kennzeichnung von Messgeräten beim Inverkehrbringen
- § 22 Verkehrsfehlergrenzen
- § 23 Aufstellung, Gebrauch und Wartung von Messgeräten
- § 24 Vermutungswirkung
- § 25 Ausnahmen bei Werten für Messgrößen
- § 26 Angabe von Gewichtswerten
- § 30 Pflichten beim Verwenden einer öffentlichen Waage
- § 31 Pflichten bei der Durchführung öffentlicher Wägungen
- § 32 Nachweis des Wägergebnisses
- § 34 Eichfrist
- § 36 Durchführung der Eichung
- § 37 Eichtechnische Prüfung
- § 38 Kennzeichnung der Messgeräte
- § 57 Ordnungswidrigkeiten
- Anlage 8 Kennzeichen

Zivilprozessordnung

- § 383 Verweigerung des Zeugnisses

Regelermittlungsausschuss

Ermittelte Regeln und Erkenntnisse des Regelermittlungsausschusses nach § 46 MessEG

§ 11 Internetdarstellung

(3) Die Fundstellen der vom Ausschuss nach § 1 Absatz 1 ermittelten technischen Regeln und Erkenntnisse sollen gemäß § 46 Absatz 2 Satz 1 des Mess- und Eichgesetzes im Bundesanzeiger und zusätzlich vor der Veröffentlichung nachrichtlich in der Internetdarstellung des Ausschusses veröffentlicht werden.

(4) Stellt der Ausschuss gemäß § 1 Absatz 2 fest, dass er die Eignung einer vom ihm nach § 1 Absatz 1 ermittelten Regel, technischen Spezifikation oder sonstigen Erkenntnis, nicht mehr für gegeben hält, wird der Wortlaut der Feststellung vor Veröffentlichung gemäß § 46 Absatz 4 Satz 3 des Mess- und Eichgesetzes im Bundesanzeiger nachrichtlich auch in der Internetdarstellung des Ausschusses veröffentlicht. Dies gilt entsprechend, soweit im Anwendungsbereich der ermittelten Regeln, technischen Spezifikationen oder sonstigen Erkenntnisse eine neue harmonisierte Norm oder ein neues normatives Dokument vorliegt.

(5) Der Ausschuss kann nach pflichtgemäßem Ermessen Informationen über seine Arbeit in der Internetdarstellung veröffentlichen.
Mess- und Eichgesetz (Auszug)

§ 1 Anwendungsbereich des Gesetzes
Dieses Gesetz ist anzuwenden auf
1. Messgeräte und sonstige Messgeräte, soweit sie in einer Rechtsverordnung nach § 4 Absatz 1 oder 2 erfasst sind,
2. Teilgeräte, soweit in einer Rechtsverordnung nach § 4 Absatz 3 Teilgeräte bestimmt sind,
3. Zusatzeinrichtungen zu Messgeräten, soweit diese nicht durch eine Rechtsverordnung nach § 4 Absatz 4 vom Anwendungsbereich dieses Gesetzes ausgenommen sind,
4. Messwerte, die mit Hilfe der Messgeräte nach Nummer 1 ermittelt werden,
5. ...

§ 3 Messgerätespezifische Begriffsbestimmungen
Im Sinne dieses Gesetzes und der auf seiner Grundlage ergangenen Rechtsverordnungen sind folgende Begriffsbestimmungen anzuwenden:
1. ...
5. Eichung ist jede behördliche oder auf behördliche Veranlassung erfolgende Prüfung, Bewertung und Kennzeichnung eines Messgeräts, die mit der Erlaubnis verbunden sind, das Messgerät im Rahmen des vorgesehenen Verwendungszwecks und unter den entsprechenden Verwendungsbedingungen für eine weitere Eichfrist zu verwenden,
6. Fehlergrenze ist die beim Inverkehrbringen und bei der Eichung eines Messgeräts zulässige Abweichung der Messergebnisse des Messgeräts vom wahren Messergebnis,
7. Inbetriebnahme eines Messgeräts ist die erstmalige Nutzung eines für den Endnutzer bestimmten Messgeräts für den beabsichtigten Zweck,
8. Konformitätsbewertung ist das Verfahren zur Bewertung, ob spezifische Anforderungen an ein Messgerät erfüllt worden sind,
9. Konformitätsbewertungsstelle ist eine Stelle, die Konformitätsbewertungstätigkeiten einschließlich Kalibrierungen, Prüfungen, Zertifizierungen und Inspektionen durchführt,
10. Konformitätserklärung ist die Erklärung des Herstellers, dass ein Messgerät nachweislich die gesetzlichen Anforderungen erfüllt,
...
21. Verkehrsfehlergrenze ist die beim Verwenden eines Messgeräts zulässige Abweichung der Messergebnisse des Messgeräts vom wahren Messergebnis,
22. Verwenden eines Messgeräts ist das erforderliche Betreiben oder Bereithalten eines Messgeräts zur Bestimmung von Messwerten
 a) im geschäftlichen oder amtlichen Verkehr oder
 b) bei Messungen im öffentlichen Interesse;
 bereitgehalten wird ein Messgerät, wenn es ohne besondere Vorbereitung für die genannten Zwecke in Betrieb genommen werden kann und ein Betrieb zu diesen Zwecken nach Lage der Umstände zu erwarten ist,
23. Verwenden von Messwerten ist die erforderliche Nutzung von Messergebnissen eines Messgeräts
 a) im geschäftlichen oder amtlichen Verkehr oder
 b) bei Messungen im öffentlichen Interesse,
...

1 § 4 Verordnungsermächtigungen, die Bundesregierung kann Rechtsverordnungen mit Zustimmung des Bundesrates erlassen (MessEG), zum Beispiel:
Abs. 1 Satz 1 − zur Gewährleistung der Messrichtigkeit und Messbeständigkeit ...
Abs. 1 Nr. 3 − im amtlichen Verkehr und bei Messungen im öffentlichen Interesse, diejenigen Messgeräte näher zu bestimmen, die vom Anwendungsbereich dieses Gesetzes erfasst sind.
Abs. 1 Satz 2 − Dabei kann die Bundesregierung auch die Begriffe „amtlicher Verkehr“ und „Messungen im öffentlichen Interesse“ nach Satz 1 Nummer 3 näher bestimmen.
§ 31 Anforderungen an das Verwenden von Messgeräten

(1) Verwendet werden dürfen ausschließlich Messgeräte oder sonstige Messgeräte, die den Bestimmungen dieses Gesetzes und der auf seiner Grundlage erlassenen Rechtsverordnungen entsprechen. Sie müssen im Rahmen der vorgesehenen Verwendungsbedingungen eingesetzt werden.

(2) Wer ein Messgerät verwendet, hat sicherzustellen, dass

1. die wesentlichen Anforderungen an das Messgerät nach § 6 Absatz 2 während der gesamten Zeit, in der das Messgerät verwendet wird, und bei der Zusammenschaltung mit anderen Geräten erfüllt sind, wobei anstelle der Fehlergrenzen nach § 6 Absatz 2 die Verkehrsfehlergrenzen einzuhalten sind,
2. die in einer Rechtsverordnung nach § 41 Nummer 3 enthaltenen Vorschriften über das Verwenden öffentlicher Messgeräte beachtet werden, wenn das Messgerät dazu verwendet wird, Messungen für jedermann vorzunehmen (öffentliches Messgerät),
3. das Messgerät nach § 37 Absatz 1 nicht ungeeicht verwendet wird,
4. ...

§ 32 Anzeigepflicht

(1) Wer neue oder erneuerte Messgeräte verwendet oder im Auftrag des Verwenders Messwerte von solchen Messgeräten erfasst, hat die betroffenen Messgeräte der nach Landesrecht zuständigen Behörde spätestens sechs Wochen nach Inbetriebnahme anzuzeigen.

Anzeigen sind

1. die Geräteart,
2. der Hersteller,
3. die Typbezeichnung,
4. das Jahr der Kennzeichnung des Messgeräts sowie
5. die Anschrift desjenigen, der das Messgerät verwendet.

Satz 1 ist nicht auf Maßverkörperungen oder Zusatzeinrichtungen und nicht auf einen Verwender von neuen oder erneuerten Messgeräten anzuwenden, der nachweisen kann, dass er einen Dritten mit der Erfassung der Messwerte beauftragt hat.

(2) Werden mehr als ein Messgerät einer Messgeräteart verwendet oder von mehr als einem Messgerät einer Messgeräteart im Auftrag des Verwenders Messwerte erfasst, hat der Verpflichtete zur Erfüllung des Absatzes 1

1. die zuständige Behörde spätestens sechs Wochen nach Inbetriebnahme des zweiten Messgeräts einer Messgeräteart darüber zu informieren oder informieren zu lassen, welche Messgerätearten er verwendet oder von welchen Messgerätearten er Messwerte erfasst; dabei ist die Anschrift des Verpflichteten anzuzeigen, und
2. sicherzustellen, dass Übersichten der verwendeten Messgeräte oder der Messgeräte, von denen Messwerte erfasst werden, mit den in Absatz 1 Satz 2 genannten Angaben der zuständigen Behörde auf Anforderung unverzüglich zur Verfügung gestellt werden.

(3) Die nach Landesrecht zuständigen Behörden stellen sicher, dass eine zentrale, benutzerfreundliche Möglichkeit zur Erfüllung der Anzeigepflicht auf elektronischem Weg oder per Telefax sowie eine einheitliche Postadresse zur Verfügung stehen. Die Behörden bestätigen den Eingang der Anzeigen nach den Absätzen 1 und 2.

§ 33 Anforderungen an das Verwenden von Messwerten

(1) Werte für Messgrößen dürfen im geschäftlichen oder amtlichen Verkehr oder bei Messungen im öffentlichen Interesse nur dann angegeben oder verwendet werden, wenn zu ihrer Bestimmung ein Messgerät bestimmungsgemäß verwendet wurde und die Werte auf das jeweilige Messergebnis zurückzuführen sind, soweit in der Rechtsverordnung nach § 41 Nummer 2 nichts anderes bestimmt ist. Andere bundesrechtliche Regelungen, die vergleichbaren Schutzzwecken dienen, sind weiterhin anzuwenden.

2 Der Paragraf 6 Abs. 2 MessEG behandelt das „Inverkehrbringen von Messgeräten“, da es keine nationale Ersteichung mehr gibt.
3 Die Verwenderanzeige gemäß § 32 MessEG ist unter www.eichamt.de zu finden.
Fortsetzung § 33 Eichung

(2) Wer Messwerte verwendet, hat sich im Rahmen seiner Möglichkeiten zu vergewissern, dass das Messgerät die gesetzlichen Anforderungen erfüllt, und hat sich von der Person, die das Messgerät verwendet, bestätigen zu lassen, dass sie ihre Verpflichtungen erfüllt.

(3) Wer Messwerte verwendet, hat
1. dafür zu sorgen, dass Rechnungen, soweit sie auf Messwerten beruhen, von demjenigen, für den die Rechnungen bestimmt sind, in einfacher Weise zur Überprüfung angegebener Messwerte nachvollzogen werden können und
2. für die in Nummer 1 genannten Zwecke erforderlichenfalls geeignete Hilfsmittel bereitzustellen.

§ 37 Eichung und Eichfrist

(1) Messgeräte dürfen nicht ungeeicht verwendet werden,
1. nachdem die in der Rechtsverordnung nach § 41 Nummer 6 bestimmte Eichfrist abgelaufen ist oder
2. wenn die Eichfrist nach Absatz 2 vorzeitig endet.

Für Messgeräte, die nach den Vorschriften des Abschnitts 2 in Verkehr gebracht wurden, beginnt die Eichfrist mit dem Inverkehrbringen; sie entsprechen geeichten Messgeräten für die Dauer der mit dem Inverkehrbringen beginnenden jeweiligen Eichfrist und bedürfen für die Dauer dieser Eichfrist keiner Eichung.

(2) Die Eichfrist endet vorzeitig, wenn
1. das Messgerät die wesentlichen Anforderungen im Sinne des § 6 Absatz 2 nicht erfüllt, wobei anstelle der Fehlerränder nach § 6 Absatz 2 die in einer Rechtsverordnung nach § 41 Nummer 1 bestimmten Verkehrsfehlergrenzen einzuhalten sind,
2. ein Eingriff vorgenommen wird, der Einfluss auf die messtechnischen Eigenschaften des Messgeräts haben kann oder dessen Verwendungsbereich erweitert oder beschränkt,
3. die vorgeschriebene Bezeichnung des Messgeräts geändert oder eine unzulässige Bezeichnung, Aufschrift, Messgröße, Einteilung oder Hervorhebung einer Einteilung angebracht wird,
4. die in einer Rechtsverordnung nach § 30 Nummer 4 oder § 41 Nummer 6 vorgeschriebenen Kennzeichen unkenntlich, entwertet oder vom Messgerät entfernt sind, dies ist nicht anzuwenden, wenn
 a) die Unkenntlichmachung, Entwertung oder Entfernung unter Aufsicht einer nach § 40 zuständigen Stelle durchgeführt werden und
 b) die unkenntlich gemachten, entwerteten oder entfernten Kennzeichen durch geeignete Kennzeichen der beaufsichtigenden Stelle ersetzt werden,
5. das Messgerät mit einer Einrichtung verbunden wird, deren Anfügung nicht zulässig ist.

(5) Absatz 2 Nummer 1, 2 und 4 gilt nicht für instand gesetzte Messgeräte, wenn
1. das Messgerät nach der Instandsetzung die wesentlichen Anforderungen nach § 6 Absatz 2 erfüllt, wobei anstelle der Fehlerränder nach § 6 Absatz 2 die in einer Rechtsverordnung nach § 41 Nummer 1 bestimmten Verkehrsfehlergrenzen einzuhalten sind,
2. die erneute Eichung unverzüglich beantragt wird,
3. die Instandsetzung durch ein in der Rechtsverordnung nach § 41 Nummer 7 bestimmtes Zeichen des Instandsetzers kenntlich gemacht ist und
4. der Instandsetzer die zuständige Behörde unverzüglich über die erfolgte Instandsetzung in Kenntnis gesetzt hat.

(6) ...
§ 38 Verspätete Eichungen
1. Hat der Verwender die Eichung mindestens zehn Wochen vor Ablauf der Eichfrist beantragt und das zur Eichung seinerseits Erforderliche getan oder angeboten, steht das Messgerät trotz des Ablaufs der Eichfrist bis zum Zeitpunkt der behördlichen Überprüfung einem geeichten Messgerät gleich.

§ 41 Verordnungsermächtigung
Die Bundesregierung wird ermächtigt, durch Rechtsverordnung mit Zustimmung des Bundesrates Regelungen zu erlassen
1. zur Konkretisierung der sich aus § 31 ergebenden Pflichten; dabei können insbesondere Anzeige-, Dokumentations-, Prüf- und Aufbewahrungspflichten sowie Verkehrsfehlergrenzen bestimmt werden,
2. zur Konkretisierung der sich aus § 33 Absatz 1 ergebenden Pflichten sowie über Ausnahmen von diesen Pflichten,
3. über das Verwenden öffentlicher Messgeräte im Sinne des § 31 Absatz 2 Nummer 2, insbesondere über
 a) die Ausstattung, die Unterhaltung und den Betrieb öffentlicher Messgeräte, die Durchführung von Messungen und die Anzeigepflichten des Verwenders eines öffentlichen Messgeräts,
 b) die Anforderungen an die Sachkunde und Unabhängigkeit des Verwenders und des Betriebspersonals sowie an die Prüfung dieser Anforderungen,
 c) den Nachweis der Messungen und die Aufbewahrung der Unterlagen,
 d) die Kennzeichnung der öffentlichen Messgeräte,
 e) das Verfahren im Zusammenhang mit den Buchstaben a bis d,
4. über das Verbot der Ausnutzung von Verkehrsfehlergrenzen und Abweichungen,
5. zur Bestimmung von Ausnahmen von den Pflichten beim Verwenden von Messgeräten oder Messwerten für bestimmte Verwendungen nach § 36,
6. über die Eichung und die Eichfristen, insbesondere über
 a) Beginn und Dauer der Eichfristen,
 b) die Voraussetzungen zur Verlängerung von Eichfristen, insbesondere Vorgaben in Bezug auf die Durchführung und die Wiederholung von Prüfungen sowie Anforderungen an die Beschaffenheit und Prüfung von Prüf- und Kontrollmitteln,
 c) die Vorbereitung und Durchführung der Eichung, einschließlich der Kennzeichnung und der Wiederholung von Prüfungen sowie der Pflichten des Antragstellers zur Vorlage von Dokumenten und zur Mitwirkung bei der Vorbereitung und Durchführung der Eichung,

Fußnote
§ 41: Tritt gemäß Artikel 27 Absatz 2 MessEG am 1. August 2013 in Kraft.
§ 46 Regelermittlungsausschuss
(1) 1Bei der Physisch-Technischen Bundesanstalt wird ein Regelermittlungsausschuss einge-
setzt. 2Er hat die Aufgabe, auf der Grundlage des Standes der Technik
1. Regeln und technische Spezifikationen zu ermitteln, um die nach § 6 Absatz 2 zu be-
achtenden wesentlichen Anforderungen an Messgeräte zu konkretisieren, zu ergän-
zen und zu prüfen, soweit es für ein Messgerät keine harmonisierte Norm oder nor-
mativen Dokumente gibt,
2. Regeln und Erkenntnisse über Verfahren der Konformitätsbewertung zu ermitteln, die
zum Nachweis der Konformität bestimmter Messgeräte geeignet sind, soweit es für
Verfahren der Konformitätsbewertung für Messgeräte keine harmonisierte Norm oder
normativen Dokumente gibt,
3. Regeln und Erkenntnisse zu ermitteln, um die Pflichten von Personen näher zu bestim-
men, die Messgeräte oder Messwerte verwenden.
Der Ausschuss berücksichtigt bei seiner Tätigkeit insbesondere die Potenziale für innovati-
ve Produkte und Verfahren im Bereich des gesetzlichen Messwesens.
(2) 1Die Physikalisch-Technische Bundesanstalt kann die Fundstellen der vom Ausschuss nach
Absatz 1 ermittelten technischen Regeln und Erkenntnisse im Bundesanzeiger bekannt
machen. 2Die Dokumente, auf die Bezug genommenen wird, müssen in deutscher Spra-
che verfügbar sein.

§ 60 Bußgeldvorschriften
(1) Ordnungswidrig handelt, wer vorsätzlich oder fahrlässig
14. entgegen § 31 Absatz 1 Satz 1 ein Messgerät oder ein sonstiges Messgerät verwendet,\(^8\)
16. entgegen § 31 Absatz 2 Nummer 2 in Verbindung mit einer Rechtsverordnung nach § 41
Nummer 3 nicht sicherstellt, dass die dort genannten Vorschriften beachtet werden,
18. entgegen § 32 Absatz 1 Satz 1 eine Anzeige nicht, nicht richtig, nicht vollständig oder
nicht rechtzeitig erstattet,
26. einer Rechtsverordnung nach § 41 Nummer 4, 6, 7, 8 oder Nummer 10 oder § 44 Ab-
satz 2 in Verbindung mit § 44 Absatz 1 Nummer 1, 2, 6, 7, 9 oder Nummer 11 oder ei-
er vollziehbaren Anordnung auf Grund einer solchen Rechtsverordnung zuzwiderhan-
delt, soweit die Rechtsverordnung für einen bestimmten Tatbestand auf diese Buß-
geldvorschrift verweist oder
27. ...
(2) Die Ordnungswidrigkeit kann in den Fällen des Absatzes 1 Nummer 1, 14, 15, 19, 21 und
22 mit einer Geldbuße bis zu fünfzigtausend Euro, in den Fällen des Absatzes 1 Nummer
18 mit einer Geldbuße bis zu zehntausend Euro und in den übrigen Fällen mit einer Geld-
buße bis zu zwanzigtausend Euro geahndet werden.
(3) ...
(4) ...

\(^8\) Verwendet werden dürfen ausschließlich Messgeräte oder sonstige Messgeräte, die den Bestimmungen dieses Gesetzes und der auf
seiner Grundlage erlassenen Rechtsverordnungen entsprechen (MessEG).
§ 1, erstmalige Kennzeichnung MessEV

Mess- und Eichverordnung (Auszug)

§ 1 Anwendungsbereich für Messgeräte und Teilgeräte

(1) Das Mess- und Eichgesetz vom 25. Juli 2013 (BGBl. I S. 2722) in der jeweils geltenden Fassung und diese Verordnung sind auf Messgeräte anzuwenden, die zu den in Absatz 2 und Absatz 3 genannten Zwecken verwendet werden sollen, und die zumindest eine der folgenden Messgrößen bestimmen sollen:

1. Länge oder Kombinationen von Längen zur Längen- oder Flächenbestimmung,
2. Masse,
...
12. Messgrößen im öffentlichen Verkehr, sofern dies folgenden Zwecken dient:
 a) der amtlichen Überwachung des öffentlichen Verkehrs,
 ...

(2) Die in Absatz 1 Nummer 1 bis 12 genannten Messgeräte unterfallen vorbehaltlich des Satzes 2 dem Mess- und Eichgesetz und dieser Verordnung, wenn sie bestimmt sind

1. zur Verwendung im geschäftlichen oder amtlichen Verkehr,
 ...

9 Trifft auf Absatz 1 Nr. 2 und 12 nicht zu.

Kennzeichnung der erstmalig in Verkehr gebrachten Waagen

zum Beispiel CEM 16 0103

Bis zum 19. April 2016 erfolgte die Kennzeichnung nach der Richtlinie 2009/23/EG (NAWID), zum Beispiel:

CE 0103 M 06

CE Konformitätskennzeichnung (93/465/EWG)
0103 Kennnummer der Konformitätsbewertungsstelle (früher benannte Stelle)
M grüne quadratische Marke Metrologie-Kennzeichnung
06 die letzten beiden Ziffern des Jahres der Anbringung der CE-Kennzeichnung

Hinweis: Die Anordnung kann auch wie folgt sein: CEM 06 M 0103
§ 5 Vom Anwendungsbereich ausgenommene Verwendungen

(2) Im amtlichen Verkehr sind das Mess- und Eichgesetz und diese Verordnung nicht anzuwenden,

1. zur Erstattung von Gutachten für staatsanwaltschaftliche oder gerichtliche Verfahren, für Schiedsverfahren oder für andere amtliche Zwecke,
2. zur Durchführung sonstiger öffentlicher Überwachungsaufgaben.

Die Ausnahmen gemäß Satz 1 Nummer 6 bis 8 sind nur anwendbar, wenn

1. in anderer Weise als nach dem Mess- und Eichgesetz und dieser Verordnung sichergestellt ist, dass das Verwenden der Messgeräte zu einer genaueren Bestimmung von Messwerten führt als dies mit einem für den Verwendungszweck geeigneten Messgerät, das dem Mess- und Eichgesetz entspricht, erreicht wird und die metrologische Rückführung des auszunehmenden Messgeräts gewährleistet ist; die Regelung ist nicht anzuwenden für Messgeräte zur amtlichen Überwachung des öffentlichen Verkehrs; oder
2. die Messrichtigkeit der Geräte für den Bereich, in dem sie bei der Durchführung der amtlichen Aufgabe verwendet werden, ohne Bedeutung ist.

(4) Das Mess- und Eichgesetz und diese Verordnung sind ferner nicht anzuwenden, sofern spezialgesetzliche Regelungen Ausnahmen ausdrücklich vorsehen.

(5) Die Beweislast dafür, dass die Verwendung eines Messgeräts oder eines Messwerts eine Ausnahme vom Anwendungsbereich nach den Absätzen 1 bis 4 darstellt, trägt der Verwender.

§ 13 Gemeinsame Vorschriften für Kennzeichnungen und Aufschriften von Messgeräten

(2) ...

Erläuterung zu § 5 (Redaktion)

In der Anlage 7 (zu § 34 Absatz 1 Nummer 1) sind „Besondere Eichfristen für einzelne Messgeräte“ aufgeführt, die von der zweijährigen Eichfrist abweichen (Auszug):

1. Messgeräte zur Bestimmung der Länge oder Kombinationen von Längen zur Längen- oder Flächenbestimmung
 1.1 mechanische Längenmessgeräte – nicht befristet –

2.2 Nichtselbsttätige Waagen
 2.2.1 nichtselbsttätige Waagen mit einer Höchstlast von 3.000 Kilogramm oder mehr mit Ausnahme der Baustoffwaagen – 3 Jahre –

12. Messgeräte zur Bestimmung von Messgrößen im öffentlichen Verkehr
 12.1 Radlastwaagen und Geschwindigkeitsmessgeräte für die amtliche Überwachung des öffentlichen Verkehrs – 1 Jahr –

(2019)
§ 14 Kennzeichnung von Messgeräten beim Inverkehrbringen

(1) Die in § 8 Absatz 1 genannten Messgeräte sind vorbehaltlich des Absatzes 2 zu kennzeichnen

1. mit der CE-Kennzeichnung gemäß ..., nachfolgend
2. mit der Metrologie-Kennzeichnung, bestehend aus dem Großbuchstaben „M“ und den beiden letzten Ziffern der Jahreszahl des Jahres, in dem die Kennzeichnung angebracht wurde, beides zusammen eingerahmt durch ein Rechteck, dessen Höhe der Höhe der CE-Kennzeichnung entspricht, und nachfolgend
3. mit der Kennnummer der Konformitätsbewertungsstelle, die an der Durchführung des Konformitätsbewertungsverfahrens in der Fertigungsphase beteiligt war; sind mehrere Konformitätsbewertungsstellen in der Fertigungsphase beteiligt, sind deren Kennnummern anzugeben; war in der Fertigungsphase keine Konformitätsbewertungsstelle zu beteiligen, so ist auch keine Kennnummer anzugeben.

zum Beispiel \[\text{CE} \ M \ 16 \ 0103\]

(2) Bis zum Ablauf des 19. April 2016 sind Messgeräte in Form nichtselbsttätiger Waagen zu kennzeichnen

1. ... bis 3. ...

zum Beispiel \[\text{CE} \ 0103 \ M \ 15\] Erläuterungen siehe Seite 11

(3) Eine Einrichtung, die dazu bestimmt ist, mit einem Messgerät in Form einer nichtselbsttätigen Waage verbunden zu werden und die keinem Konformitätsbewertungsverfahren unterzogen wurde, ist durch eine rote quadratische Markierung mit einer Seitenlänge von mindestens 25 Millimetern zu kennzeichnen, auf der in Schwarz der diagonal durchkreuzte Großbuchstabe „M“ auf rotem Hintergrund aufgedruckt ist.

(4) Messgeräte, die nicht in Absatz 1 oder in Absatz 2 geregelt sind, sind zu kennzeichnen

1. mit der Zeichenfolge „DE-M“15, die von einem Rechteck mit einer Höhe von mindestens 5 Millimetern eingerahmt ist, nachfolgend
2. mit den beiden letzten Ziffern der Jahreszahl des Jahres, in dem die Kennzeichnung angebracht wurde und
3. mit der Kennnummer der Konformitätsbewertungsstelle, die in der Fertigungsphase beteiligt war; war in der Fertigungsphase keine Konformitätsbewertungsstelle zu beteiligen, so ist auch keine Kennnummer anzugeben.

(5) Besteht ein Messgerät aus mehreren zusammenarbeitenden Geräten, die keine Teilgeräte sind, so werden die Kennzeichnungen auf dem Hauptgerät angebracht.

(6) Die Kennzeichnungen nach den Absätzen 1 bis 4 dürfen nur auf Messgeräten angebracht werden, welche die Anforderungen des Mess- und Eichgesetzes und dieser Verordnung erfüllen.

§ 22 Verkehrsfehlergrenzen

(1) Messgeräte in Form nichtselbsttätiger Waagen müssen bei der Verwendung eine Verkehrsfehlergrenze einhalten, die dem Doppelten der für sie bestimmten Fehlerrante entspricht.

(2) ...

§ 23 Aufstellung, Gebrauch und Wartung von Messgeräten

(1) Wer ein Messgerät verwendet im Sinne des § 1 Absatz 2 und 316, muss

1. sicherstellen, dass es
 a) über die für den Verwendungszweck erforderliche Genauigkeit verfügt,
 b) für die vorgesehenen Umgebungsbedingungen geeignet ist und
 c) innerhalb des zulässigen Messbereichs eingesetzt wird,

12 Messgeräte, die europäischen Vorschriften unterliegen, zum Beispiel nichtselbsttätige Waagen (Kurzbezeichnung: EU-Waagen – nichtselbsttätig)
13 Es folgt die Aufzählung der europäischen Vorschriften.
14 Stattdessen Text zu zitieren wurde die Kennzeichnung beispielhaft dargestellt.
15 Hier handelt sich um Messgeräte, die früher national erstgezeichnet wurden und ab dem 1. Januar 2015 unter das „Inverkehrbringen“ fallen.
16 § 1 Anwendungsbereich für Messgeräte und Teilgeräte (MesseV)
Fortsetzung § 23 Aufstellung, ...

2. es so aufstellen, anschließen, handhaben und warten, dass die Richtigkeit der Messung und die zuverlässige Ablesung der Anzeige gewährleistet sind; bedarf ein Messgerät keiner eigenen Anzeige gemäß Anlage 2 Nummer 9.17, hat der Verwender die zutreffende Darstellung der Messergebnisse in anderer Form entsprechend dem Stand der Technik sicherzustellen,

3. sicherstellen, dass die nach § 1718 dem Gerät beizufügenden Informationen jederzeit verfügbar sind.

(2) Wer ein Messgerät verwendet, darf Verkehrsfehlergrenzen nicht zu seinem Vorteil ausnutzen.

(3) ...

§ 24 Vermutungswirkung

(1) Es wird vermutet, dass Verwender ihre Pflichten nach § 23 erfüllen, wenn sie die Bedingungen einhalten, die hierzu nach § 46 des Mess- und Eichgesetzes in Regeln, technischen Spezifikationen oder Erkenntnissen ermittelt und veröffentlicht wurden.19

(2) (weggefallen)

§ 25 Ausnahmen bei Werten für Messgrößen

1 Werte für die folgenden Messgrößen dürfen Verwender angeben oder verwenden, auch ohne dass die angegebene Größe mit einem Messgerät im Sinne des Mess- und Eichgesetzes dieser Verordnung ermittelt worden ist:

1. Messgrößen, soweit für den betreffenden Verwendungszweck Messgeräte dem Mess- und Eichgesetz und dieser Verordnung nicht unterliegen,
2. bis 6 ...,

§ 26 Angabe von Gewichtswerten

(1) ...

(2) 1 Das Verwenden gespeicherter Taragewichtswerte zur Berücksichtigung des Gewichts von Verpackungen oder Transportgeräten ist gestattet, wenn die gespeicherten Gewichtswerte den tatsächlichen Taragewichtswerten zum Zeitpunkt ihrer Verwendung entsprechen oder so bemessen sind, dass eine Benachteiligung des Vertragspartners ausgeschlossen ist.

17 Für die verwendeten Waagen in dieser Wägebroschüre nicht von Bedeutung (MessEV).
18 § 17 ... beizufügende Informationen müssen die Funktionsweise des Messgeräts in einer Bedienungsanleitung erläutern, da ein Hersteller nicht davon ausgehen darf, dass es auch ohne Bedienungsanleitung von jedermann ordnungsgemäß in seinem vollen Funktionsumfang verwendet sowie gewartet und geprüft werden kann. ... Grundsätzlich sind Waagen der Klasse III zu verwenden. Zur amtlichen Überwachung des Straßenverkehrs sind auch Waagen der Klasse III zulässig.
§ 30 Pflichten beim Verwenden einer öffentlichen Waage
Wer eine öffentliche Waage verwendet, hat
1. die öffentliche Waage mit einem außen angebrachten Schild mit der deutlich lesbaren Aufschrift zu kennzeichnen:
 „Öffentliche Waage
 Wägebereich von ... kg bis ... kg“;
 dem Wort Waage können Hinweise auf die Art der Waage, ihren Verwendungszweck oder ihren Inhaber beigefügt werden,
2. den Beginn und die Einstellung des Betriebs einer öffentlichen Waage der zuständigen Behörde unverzüglich anzuzeigen.

§ 31 Pflichten bei der Durchführung öffentlicher Wägungen21
Wer eine öffentliche Waage verwendet, hat bei Wägungen sicherzustellen, dass
1. diese gewissenhaft und unparteiisch vorgenommen werden und
2. sie abgelehnt werden, wenn der Verwender der öffentlichen Waage, das die Wägung durchführende Betriebspersonal oder einer ihrer Angehörigen im Sinne des § 383 Absatz 1 Nummer 1 bis 3 der Zivilprozessordnung22 ein unmittelbares Interesse an dem Wägeergebnis haben.

§ 32 Nachweis des Wägeergebnisses
(1) Wer eine öffentliche Waage verwendet, hat sicherzustellen, dass das Wägeergebnis durch Unterschrift desjenigen bescheinigt wird, der dieses selbst ermittelt hat. Folgende Angaben müssen in der Bescheinigung enthalten sein:
 1. die Angabe, dass es sich um eine öffentliche Wägung handelt,
 2. Ort und Datum der Wägung,
 3. der Auftraggeber der Wägung,
 4. die Art des Wäsegutes,
 5. beim Wägen von Kraftfahrzeugen oder Anhängern das Kennzeichen,
 6. ...
(2) Wer eine öffentliche Waage verwendet, muss die Unterlagen über die bescheinigten öffentlichen Wägungen für die Dauer von zwei Jahren, gerechnet ab dem Zeitpunkt der Beendigung der Wägung, aufbewahren.

§ 34 Eichfrist
(1) Die Eichfrist eines Messgeräts beträgt zwei Jahre, soweit nicht etwas anderes bestimmt ist
 1. in Anlage 723 oder
 Soweit nicht die Eichfrist nach § 37 Absatz 1 Satz 224 des Mess- und Eichgesetzes beginnt, ist für den Fristbeginn auf den Tag der Eichung abzustellen. 3Wird ein Messgerät nach Ablauf der Eichfrist geeicht, beginnt die neue Eichfrist mit Ablauf der vorausgegangenen Eichfrist. 4Wenn ein Messgerät nach Ablauf der Eichfrist nachweislich länger als ein Jahr nicht verwendet wurde, ist für den erneuten Fristbeginn auf den Tag der Eichung abzustellen.
 (2) Unabhängig von dem nach Absatz 1 sich ergebenden rechnerischen Ende der Eichfrist endet diese bei Eichfristen, die mindestens ein Jahr betragen, erst mit dem Ende des Jahres, in dem die Frist rechnerisch endet. 3Es wird vermutet, dass das Messgerät in dem Jahr in Verkehr gebracht wurde, in dem es nach § 14 gekennzeichnet wurde.

21 Messungen für „jedermann“ nach § 31 Absatz 2 Nummer 2 MessEG auf einer öffentlichen Waage können nur dann abgelehnt werden, wenn wägetechnische Gründe oder solche des § 31 Nummer 2 MessEV vorliegen.
22 Zivilprozessordnung siehe Seite 18.
23 Die Eichfrist beträgt drei Jahre für nichtselbsttätige Waagen mit einer Höchstlast von 3.000 Kilogramm oder mehr.
24 Die Eichfrist für Messgeräte beginnt mit dem Inverkehrbringen und diese bedürfen für die Dauer dieser Eichfrist keiner Eichung (MessEG).
§ 36 Durchführung der Eichung
Die Eichung besteht aus der eichtechnischen Prüfung (§ 37) und dem Aufbringen der Eichkenn-zeichen auf dem Messgerät (§ 38).

§ 37 Eichtechnische Prüfung
(1) Die eichtechnische Prüfung besteht aus der Prüfung der formalen Anforderungen und der messtechnischen Prüfung des Messgerätes und der Bewertung der Prüfergebnisse.
(2) Sie kann in einem Vorgang erfolgen oder aus einer oder mehreren Vorprüfungen und einer Schlussprüfung bestehen.
(3) Die eichtechnische Prüfung eines Messgeräts muss den angegebenen Messbereich unter Berücksichtigung der Fehlergrenzen abdecken. Die zuständige Behörde kann auf eine eichtechnische Prüfung in den Messbereichen verzichten, die geringer als die Fehlergrenzen sind.

§ 38 Kennzeichnung der Messgeräte
(2) ...
(3) Messgeräte sind durch das Aufbringen von Sicherungszeichen nach Anlage 8 Nummer 1.4 gegen ein unbefugtes Öffnen zu schützen. Als Sicherungszeichen kann auch das Eichkennzeichen verwendet werden.
(4) ...

§ 57 Ordnungswidrigkeiten
Ordnungswidrig im Sinne des § 60 Absatz 1 Nummer 26 des Mess- und Eichgesetzes handelt, wer vorsätzlich oder fahrlässig
1. entgegen § 23 Absatz 2 eine Verkehrsfehlergrenze ausnutzt,
...

25 § 40 Absatz 1 Satz 1: Die Eichung wird von den nach Landesrecht zuständigen Behörden vorgenommen (MessEG).
0. **Vorgaben für alle Kennzeichen**

0.1 Die Farbe der in den nachfolgend aufgeführten Kennzeichen verwendeten Schriften und Zeichen ist schwarz. Die Kennzeichen können auch als Relief ohne zusätzliche Farbe in eine Plombe eingedrückt werden.

0.2 Sind Kennzeichen als Klebemarke ausgeführt, dürfen diese nicht zerstörungsfrei abgelöst werden können.

1. **Kennzeichen der Eichbehörden (§ 38 MessEV)**

Beispiel:

Beispiel:

1.2 Beträgt die Eichfrist weniger als zwölf Monate, besteht die Kennzeichnung aus einer runden Klebemarke mit den Monatszahlen 1 bis 12 am Rand sowie dem Eichkennzeichen in der Mitte. Der Kalendermonat der Eichung ist auf der Klebemarke kenntlich zu machen. Die Kennzeichnung kann auch durch Kombination der runden Marke nach Nummer 1.1 mit einem Ringaufkleber erfolgen, der die Monatszahlen 1 bis 12 trägt.

Beispiel:

1.3 Das Zusatzzeichen zur Bezeichnung des Endes der Eichfrist hat eine der folgenden Formen.

Beispiel:

-- Zusatzzeichen – Ende der Eichfrist --

Zur besseren Information des Messgeräteverwenders und der Verbraucher kann ein Zusatzzeichen über das Ende der Eichfrist an einer gut sichtbaren Stelle des Messgerätes angebracht werden. Die Zusatzzeichen haben in Abhängigkeit der letzten Ziffer des Jahres, in dem die Eichfrist endet, folgende Farbgebung, die sich in einem Turnus von 5 Jahren wiederholt:

| 0 / 5: gelb | 1 / 6: braun | 2 / 7: blau | 3 / 8: grau | 4 / 9: grün |

1.4 Das Sicherungszeichen besteht aus dem ersten Teil des Eichkennzeichens nach Nummer 1.1; die Hintergrundfarbe ist orange, entsprechend der nachfolgenden Darstellung.

Beispiel:

1.5 Das Entwertungszeichen besteht aus zwei sich tangierenden Halbkreisen in nachstehender Ausführung.

Beispiel:

2. ...

3. Kennzeichen des Instandsetzers (§ 54 Absatz 3 Satz 2, § 55 Absatz 2 Satz 2)

Beispiel:

Beispiel:

4. ...

Zivilprozessordnung § 383

(1) Zur Verweigerung des Zeugnisses sind berechtigt:
 1. der Verlobte einer Partei;
 2. der Ehegatte einer Partei, auch wenn die Ehe nicht mehr besteht;
 2a. der Lebenspartner einer Partei, auch wenn die Lebenspartnerschaft nicht mehr besteht;
 3. diejenigen, die mit einer Partei in gerader Linie verwandt oder verschwägert, in der Seitenlinie bis zum dritten Grad verwandt oder bis zum zweiten Grad verschwägert sind oder waren;
 4. bis 6. ...

(2) Die unter Nummern 1 bis 3 bezeichneten Personen sind vor der Vernehmung über ihr Recht zur Verweigerung des Zeugnisses zu belehren.

(3) ...
Regelermittlungsausschuss (REA)

Bundesanzeiger vom 20. September 2019; BAnz AT 20.09.2019 B8

Quellenangabe:
Ermittelte Regeln und Erkenntnisse des Regelermittlungsausschusses nach § 46 des Mess- und Eichgesetzes

DOI: 10.7795/510.20190828. – verfügbar unter: https://doi.org/10.7795/510.20190828

Auszug

Unter 2.3 / 2.4 EU-Waagen – nichtselbsttätige elektromechanische/mechanische Waagen steht, bis auf einen Spiegelstrich, jeweils der gleiche Text.

„Regeln und Erkenntnisse zu den Verwendungs pflichten“

„Gemäß § 22 Absatz 1 MessEV sind Verkehrsfehlergrenzen einzuhalten, die dem Doppelten der für die Messgeräte bestimmten Fehlernahme entsprechen. Werden die folgenden Regeln und Erkenntnisse angewendet, wird gemäß § 34 MessEG und § 24 MessEV vermutet, dass Verwender ihre Pflichten nach den §§ 31 Absatz 2 Nummer 1 und 33 Absatz 3 MessEG und nach § 23 MessEV erfüllen, soweit diese von den Regeln und Erkenntnissen abgedeckt sind:

- Genauigkeitsanforderungen

Es sind grundsätzlich nichtselbsttätige Waagen mindestens der Genauigkeitsklasse III zu verwenden.

Nichtselbsttätige Waagen der Genauigkeitsklasse IIII dürfen verwendet werden:
- für folgende Schüttgüter und Massenrohstoffe:
 - Gesteinskörnungen aus Kies, Sand, Naturstein, Eisenhütten Schlacken
 - als Baustoffwaagen in Baustoffaufbereitungsanlagen für Transportbeton, Mörtel, Teersplit und ähnlich Baustoffe
 - Bauschutt und Bauschutt recyclingmaterial
 - Erd- und Bodenaushub
 - Keramische Rohstoffe und Industrieminerale
 - Streusalz
 - Kompost
 - zur Verwiegung von nicht gefährlichem Abfall im Sinne des Kreislaufwirtschaftsgesetzes, wenn hierfür eine fahrzeugmontierte Waage verwendet wird

- zur amtlichen Überwachung des Straßenverkehrs.

Der Betrag der Leistungen nach § 5 (1) Nr. 11 MessEV wird alle drei Jahre an die Preisentwicklung angepasst und von der PTB im Bundesanzeiger veröffentlicht. (Mit Stand vom 13.03.2018 ergeben sich 20,52 Euro pro Tonne.)

- Achsweises Wägen gemäß § 6 Absatz 4 der Eichordnung (EO) in der am 31.12. 2014 gelten- den Fassung.“

(Text: EO § 6 Absatz 4 – Achsweises Wägen: „Wer eine Straßenfahrzeugwaage im geschäftlichen oder amtlichen Verkehr verwendet, darf das Gesamtgewicht des Fahrzeugs nicht durch achsweises Wägen ermitteln, wenn die Beruhigungsstrecken vor oder hinter der Waagenbrücke nicht mit dieser auf gleicher Höhe liegen und nicht gerade und weit seinerseits ausgeführt sind. Darauf ist durch ein Schild hinzuweisen. Achsweises Wägen ist außerdem unzulässig, wenn das Wägewägut flüssig ist.“)

Fundstelle im Bundesanzeiger (Amtlicher Teil) – https://www.bundesanzeiger.de

27 Dieser Text im Spiegelstrich entfällt bei „2.4 EU-Waagen – nichtselbsttätig, mechanische Waagen“!
Die Seiten 19–20 werden nur noch aktualisiert, wenn sich der Inhalt des Auszuges ändert!

Die jeweils aktuelle Veröffentlichung ist der REA-Internetseite zu entnehmen.

Verwenden von Messwerten

Der Regeltermittlungsausschuss (REA) hat, laut Beschluss 5/11, im elektronischen Abstimmungsverfahren zur 11. Sitzung des REA vom 15.11.2017 folgendes beschlossen:

Zu § 25 Nr. 7 MessEV hat der REA die folgende Sichtweise:
Ohne ein Messgerät berechnete Werte dürfen für mess- und eichrechtliche Zwecke angegeben und verwendet werden, wenn alle folgenden Voraussetzungen erfüllt sind:
• Die Berechnung erfolgt mit den Rechenoperationen: Summe, Differenz, Produkt oder Quotient. (Kombinationen der Rechenoperationen sind möglich.)
• Alle Eingangsgrößen stammen von Messgeräten, die die Anforderungen des Mess- und Eichrechts erfüllen. (Faktoren, Konstanten oder andere Werte, die keine Messwerte sind, können nicht in die Berechnung einbezogen werden.)
• Der REA hat Regeln zum Berechnungsverfahren ermittelt. (Grundlage für entsprechende Regeln ist der Stand der Technik. Regeln müssen in deutscher Sprache verfügbar sein.)
• Die vom REA ermittelten Regeln enthalten eine Feststellung zu den zulässigen Abweichungen von den wahren Werten.
• Die Regeln wurden im Bundesanzeiger bekannt gemacht. (Die Bekanntmachung erfolgt durch die PTB.)
• Die verwendeten Messwerte sind mit angegeben. (Alle Eingangsgrößen für die Berechnung des Wertes müssen z. B. auf der Rechnung mit angegeben werden.)

(§ 25 MessEV Ausnahmen bei Werten für Messgrößen, Wortlaut siehe Seite 14)

Quelle: https://www.ptb.de/cms/metrologische-dienstleistungen/rea/sitzungen-termine-beschluesse.html
Teil 1 – Abschnitt 2
Leitfaden für das Wägen von Fahrzeugen zur amtlichen Überwachung des öffentlichen Verkehrs (Vorschlag)

Vorbemerkungen

Anmerkung: Alle nachfolgenden Überlegungen gehen davon aus, dass die verwendeten Radlastwaagen mindestens der Genauigkeitsklasse III (vier) einer nichtselbsttätigen Waage nach DIN EN 45501 entsprechen, die Brückenwaagen der Genauigkeitsklasse III.

1 Wägen auf Straßenfahrzeugwaagen
Die Bestimmung des Gesamtgewichtes auf Straßenfahrzeugwaagen stellt in der Regel kein grundsätzliches Problem dar, sofern das Fahrzeug mit allen Achsen und Rädern auf der Waage steht. Im Folgenden wird diese Wägeart nur im Zusammenhang mit einer Wägung von Achsen eines Fahrzeugs genannt.

2 Grundsätzliches beim Wägen

2.1 Begriffsbestimmungen
Achslastparallelwägung: Alle Achsen eines Fahrzeugs werden gleichzeitig auf Achslastwaagen (zwei oder mehr Radlastwaagen pro Achse) gestellt und die angezeigten Werte jeder einzelnen Radlastwaage werden addiert und so die Achslasten bestimmt. Das Gesamtgewicht des Fahrzeugs ergibt sich aus der Summe der Achslasten.

Achslastseriellwägung: Ein Fahrzeug fährt mit jeder einzelnen Achse nacheinander auf dieselbe Achslastwaage (zwei oder mehr Radlastwaagen pro Achse), wobei das Fahrzeug stoppt, wenn sich die Achse vollständig auf der Achslastwaage befindet. Die angezeigten Werte jeder einzelnen Radlastwaage werden addiert und so die Achslasten bestimmt. Das Gesamtgewicht des Fahrzeugs ergibt sich aus der Summe der Achslasten.

Dynamische Achslastwägung: Ein Fahrzeug überfährt mit geringer Geschwindigkeit eine Achslastwaage, die die einzelnen Werte für jede Achse / jedes Rad dynamisch ermittelt und an einen PC sendet. Eine Software bestimmt daraus die Achslasten und die Gesamtlast.

Kombinierte Wägung: Alle Achsen eines Fahrzeugs werden gleichzeitig auf Achslastwaagen (zwei oder mehr Radlastwaagen pro Achse) und eine Straßenfahrzeugwaage (auch als „Kombination von Lastaufnehmern“; Definition siehe DIN EN 45501) gestellt. Die angezeigten Werte jeder einzelnen Radlastwaage und der Straßenfahrzeugwaage werden addiert und so die Gesamtlast bestimmt.
2.2 Besonderheiten beim achsweisen Wägen
Bei achsweisen Wägen besteht durch die Last (Fahrzeug) eine Verbindung zwischen beweglicher Waagenbrücke und fester Umgebung. Damit entstehen zusätzliche Einflüsse auf die Wägeergebnisse:

a) seitens der Waage,
 - Überschreitung der Fehlergrenzen durch Querkkräfte,

b) seitens des Fahrzeugs,
 - durch unterschiedliche Einschwingzustände oder sich ändernde Verzwängungen in der Achsaufhängung,

c) seitens der An- und Abfahrtbereiche,
 - durch Niveauunterschiede zwischen Waagenbrücke und An- und Abfahrtbereichen, die zur Änderung der Achslastverteilung von Wägung zu Wägung führen.

3 Achsweises statisches Wägen auf Straßenfahrzeugwaagen
Das Gesamtgewicht eines Fahrzeugs darf, zum Beispiel bei zu kurzer Waagenbrücke oder bei zu geringer Höchstlast der Waage, durch achsweises Wägen ermittelt werden.

Die nachfolgenden Bedingungen sind einzuhalten:

a) Die An- und Abfahrt zur Waagenbrücke muss, im notwendigen Verschiebebereich des Fahrzeugs, mit der Waagenbrücke auf gleicher Höhe liegen sowie gerade, eben und waagerecht ausgeführt sein.

b) Die zu wägende Achse oder Achsgruppe muss vollständig auf der Waagenbrücke positioniert werden, ungebremst sein und bei Antriebsrädern darf kein Gang eingelegt sein. Ggf. ist eine nicht gewogene AchseA mit Unterlegkeilen zu sichern.

d) Die Wägeergebnisse sind mit der Angabe „Achsweise gewogen“ zu versehen.

e) Einzelachslasten von Achsaggregaten sollen jedoch nicht ermittelt werden.

f) Für die Abschätzung der größten möglichen Messabweichung (Gesamtfehler), die sich zu Ungunsten des Betroffenen auswirken kann, ist das „Grundsatzgutachten der PTB zur Verwägung von Straßenfahrzeugen“ (PTB-Mitt.5/84 S. 344) heranzuziehen:
 Die Abschätzung des möglichen positiven Gesamtfehlers ergibt:
 - Für zweiachsige Fahrzeuge 1,8 % des ermittelten Gesamtgewichts.
 - Für Fahrzeuge mit mehr als zwei Achsen 2,7 % des ermittelten Gesamtgewichts.

 (Auszug aus dem Gutachten)
 Darin ist bereits die Verkehrsfehlergrenze der Waage enthalten.

g) Ist die Waage für achsweises Wägen geprüft, was entsprechend dokumentiert ist, dann ist von jedem Teilwägeergebnis nur die der Belastung entsprechende Verkehrsfehlergrenze der Waage abzuziehen.

4 Zeitgleiches statisches Wägen auf Straßenfahrzeugwaagen und Radlastwaagen („Kombinierte Wägung“)1

Zur Verkehrüberwachung darf die Gesamtmasse eines Fahrzeugs durch kombiniertes Wägen ermittelt werden. Die nachfolgenden Bedingungen sind einzuhalten:

b) Die Ladung darf sich während der gesamten Wägedauer nicht verlagern oder alle Wägewerte müssen zeitgleich abgelesen werden.

1 Diese Ziffer gilt auch sinngemäß für die Achslastparallelwägung
2 Achslastserielle Wägung

\textit{A Redaktionsanmerkung: Möglichst, die von der Waage am weitesten entfernte Achse benutzen. Ebenfalls für Nr. 5 d) Seite 23.}
c) Die Messwerte der einzelnen Waagen sind um die (abhängig von der Waage) zulässigen Verkehrsfehlergrenzen der jeweils eingesetzten Waagen entsprechend der Belastung zu reduzieren.
d) Das Wägeergebnis (Gesamtmasse = Addition aller Messwerte der eingesetzten Waagen) ist mit der Angabe „kombiniert gewogen“ zu versehen.

5 Achsweises statisches Wägen mit Radlastwaagen zur Verkehrsüberwachung im amtlichen Verkehr³
a) Der Einsatz von Radlastwaagen ist jeweils nur in einer Linie gegenüberliegend aufgestellt zu-lässig (Achslastwägung).
e) Die Ladung darf sich während der gesamten Wägedauer nicht verlagern oder alle Wägewerte müssen zeitgleich abgelesen werden. (wie 4b)
f) Das Gesamtwichtig des Fahrzeugs wird durch Addition der Achslasten berechnet.
g) Die Messwerte der einzelnen Waagen sind um die jeweils zulässigen Verkehrsfehlergrenzen aller eingesetzten Waagen entsprechend der Belastung zu reduzieren.

6. Achsweises dynamisches Wägen mit Radlastwaagen zur Verkehrsüberwachung im amtlichen Verkehr⁵
Bei dieser Art des Wägens ist gemäß der Bedienungsanleitung der Waage(n) zu verfahren.

³ Achslastseriellwägung
⁵ Nur möglich mit Radlastwaagen, die für dynamisches Wägen zugelassen sind.

Anmerkungen der Redaktion:
Zukünftig kommen zwei verschiedene Abzüge vom Wägeergebnis zur Anwendung:
 - In dem Vorschlag des neuen Leitfadens wird der eichmäßigen Prüfung zur achsweisen Wä-
gung (Nr. 3 g) – Seite 22 – der Fahrzeugwaage Rechnung getragen. Dafür wird von jeder Teilwä-
gung die Verkehrsfehlergrenze abgezogen.
 - Sofern die Waage nicht für achsweises Wägen geprüft wurde (Nr. 3 f) – Seite 22), oder die
 - Prüfung nicht bestanden hat, muss ein Schild mit folgender Aufschrift vorhanden sein: „Achswei-
ses und nicht abgekuppeltes Wages ist ausnahmslos nicht gestattet. Beim Wagen von Lastzügen
 - muss der Teil, der auf der Waagenbrücke steht, von dem anderen Teil abgekuppelt sein.“

Die Grundlage hierzu: siehe Seite 19 – Auszug Regelermittlungsausschuss, Spiegelstrich „Achs-
 - weises Wagen“
Hier erfolgt weiterhin die Abschätzung des möglichen positiven Gesamtefehlers:
 - Für zweiachsige Fahrzeuge 1,8 % des ermittelten Gesamtgewichts.
 - Für Fahrzeuge mit mehr als zwei Achsen 2,7 % des ermittelten Gesamtgewichts.
Weitere Abzüge erfolgen nicht.
Anmerkungen zur „Kombinierten Wägung“ finden Sie auf Seite 57.
Teil 2
„Handlungshilfe Wägen – nicht nur – für öffentliche Wägungen“
Erfarbet durch das BTE-Wägeteam

Da zurzeit nicht absehbar ist, ob die „Anweisung für öffentliche Wägungen“ (Wägeanweisung) vom 28. November 2012, erarbeitet durch die Arbeitsgemeinschaft Mess- und Eichwesen, aktualisiert wird, hat sich die BTE-Redaktion entschlossen, die Anweisung als „Handlungshilfe“ unter besonderer Berücksichtigung für das Personal der Verkehrsüberwachung der Polizei zu überarbeiten.

Diese nachstehend aufgeführten Hinweise sollen drei Arten der Durchführung der Wägungen zur Verkehrsüberwachung auf Brückenwaagen beleuchten.

Wägungen auf einer
1. öffentlichen Waage

2. nicht öffentlichen Waage durch Betriebspersonal oder Polizeibeamte
Hier kann die Wäge wie auf einer öffentlichen Waage durchgeführt werden. Eine Bescheinigung des Wägeergebnisses vergleichbar des § 32 MessEV sollte in jedem Fall durch den Wäger erfolgen. Führt der Polizeibeamte die Wäge durch, sollte er durch das Betriebspersonal eingewiesen und sofern möglich, durch die Eichbehörde geschult worden sein.

3. nicht öffentlichen Waage nur durch Polizeibeamte

1 § 30, 31, 32 MessEV siehe Seite 15
2 Verpflichteter ist der Verwender der Waage. Dies ist nicht der einzelne Mitarbeiter, sondern derjenige, der die Waage im Sinne des § 3 Nummer 22 MessEG zur Bestimmung von Messwerten betreibt (laut Begründung zu § 32 MessEV).
3 Wäger kann der Verwender der öffentlichen Waage sein bzw. dass die Wäge durchführende Betriebspersonal (§ 31 MessEV).
4 Also auch das die Wäge durchführende Betriebspersonal
5 § 32 Nachweis des Wägeergebnisses siehe Seite 15
6 Bitte beachten: Nicht jede Eichbehörde führt Schulungen durch. In jedem Fall ist § 23 Abs. 1 Nr. 2 MessEV zu beachten!
„Handlungshilfe Wägen“

1. Die öffentliche/nicht öffentliche Waage
 (Die Passagen, die zusätzlich für öffentliche Waagen gelten, sind kursiv/fett markiert.)

1.1 Auf einer öffentlichen Waage werden öffentliche Wägungen durchgeführt – das heißt, es wird Wägegut Dritter für jedermann gewogen. Jedermann muss zu den festgelegten Öffnungszeiten ungehindert Zutritt zu der Waage haben.

1.2 Beim Wägen von Wägegut des Verwenders oder Betriebspersonals der öffentlichen Waage oder eines ihrer Angehörigen wird die Waage als nichtöffentliche Waage verwendet.

1.3 Die zu benutzende Waage muss geeicht sein. Die vorgeschriebene Eichfrist beträgt für
 • nichtselbsttätige Waagen (NSW) mit einer Höchstlast
 von weniger als 3 000 Kilogramm zwei Jahre,
 von 3 000 Kilogramm oder mehr drei Jahre.

Die Eichfrist endet vorzeitig, wenn
 • die Waage nach der Eichung die Verkehrsfehlergrenzen nicht einhält,
 • ein Eingriff vorgenommen wird, der Einfluss auf die messtechnischen Eigenschaften der Waage haben kann oder ihren Verwendungsbereich erweitert oder beschränkt,
 • die vorgeschriebene Bezeichnung der Waage geändert oder eine unzulässige Bezeichnung, Aufschrift, Messgröße oder Einteilung angebracht wird,
 • Zeichen für die EG-Eichung, CE-Kennzeichnung, Metrologie-Kennzeichnung einschließlich der Eichkennzeichen oder Sicherungszeichen unkenntlich, entwertet oder entfernt sind,
 • die Waage mit einer Zusatzeinrichtung verbunden wird, deren Anbau nicht zulässig ist,
 • die Verwendung oder die Bereithaltung der Waage untersagt oder einstweilen verboten wird.

1.4 Die Waage und ihre Zusatzeinrichtungen müssen in ordnungsgemäßem Zustand gehalten werden, so dass eine zuverlässige Bedienung der Waage möglich ist und richtige Wägeergebnisse gewährleistet sind.

1.5 Nach einer Reparatur der Waage ist eine erneute Eichung erforderlich.

1.6 An der öffentlichen Waage muss außen ein Schild angebracht sein mit der deutlich lesbaren Aufschrift:

 „Öffentliche Waage
 Wägebereich von ... kg bis ... kg“

 Dem Wort „Waage“ können Hinweise auf die Art der Waage, ihren Verwendungszweck oder ihren Inhaber beigefügt sein (zum Beispiel „Öffentliche Fahrzeugwaage“, „Öffentliche Gemeindewaage").

1.7 Waagen, auf denen achsweises Wägen unzulässig ist, müssen mit einem Schild mit der Aufschrift

 „Achsweises Wägen nicht zulässig“

gekennzeichnet sein.

1.8 In der MessEV wird der nachstehende Aushang bei öffentlichen Waagen nicht mehr gefordert: „Namens und Namenszug des an der Waage tätigen Betriebspersonals, das über den Nachweis der erforderlichen Sachkunde verfügt, sind für den Auftraggeber deutlich lesbar auszuhängen."

2 Verwender bzw. sachkundiges Betriebspersonal

2.1 Das Wägeergebnis der öffentlichen Wägung wird durch Unterschrift desjenigen bescheinigt, der dieses selbst ermittelt hat.

2.2 Der Verwender bzw. das Betriebspersonal hat seine Tätigkeit unparteiisch auszuüben. Zur Wahrung der Unparteilichkeit sind öffentliche Wägungen abzulehnen, wenn der
Fortsetzung Nummer 2.2 Handlungshilfe

Verwender der öffentlichen Waage, dass die Wägung durchführende Betriebspersonal oder einer ihrer Angehörigen im Sinne des § 383 Abs. 1 Nr. 1 bis 3 der Zivilprozessordnung (ZPO) ein unmittelbares Interesse an dem Wägeergebnis hat. Solche Wägungen sind als nicht öffentliche Wägungen durchzuführen – das heißt, die Ergebnisse dieser Wägungen dürfen nicht als öffentliche Wägung bescheinigt werden (siehe 1.2).

Angehörige im Sinne des § 383 Abs. 1 Nr. 1 bis 3 ZPO sind:
1. der Verlobte einer Partei;
2. der Ehegatte einer Partei, auch wenn die Ehe nicht mehr besteht;
2a. der Lebenspartner einer Partei, auch wenn die Lebenspartnerschaft nicht mehr besteht;
3. diejenigen, die mit einer Partei in gerader Linie verwandt oder verschwägert, in der Seitenlinie bis zum dritten Grad verwandt oder bis zum zweiten Grad verschwägert sind oder waren.

2.3 Wägeergebnisse darf nur derjenige bescheinigen, der diese selbst ermittelt hat. Bei Wägerwechsel zwischen Erst- (zum Beispiel Brutto) und Zweitwägung (zum Beispiel Tara) muss jede einzelne Wägung bescheinigt werden. Errechnete Nettowerte sind nicht Bestandteil der bescheinigten Wägung.

2.5 Der Verwender bzw. das Betriebspersonal hat bei Zweifeln an der ordnungsgemäßen Funktion der Waage Wägungen abzulehnen.

3 Die Wägung

3.1 Vor Beginn der Wägung ist zu beachten, dass
- die Nullstellung bei unbelasteter Waagenbrücke kontrolliert und, wenn erforderlich, mit der Nullstelleinrichtung richtig eingestellt wird,
- die Brücke der Waage einsehbar ist,
- die Waage sowie An- und Abfahrten sauber und in ordnungsgemäßen Zustand sind,
- die zu wägende Last möglichst stoßfrei auf die Waagenbrücke aufgebracht wird,
- das Befahren der Brücke mit geringer Geschwindigkeit ohne starkes Abbremsen erfolgt,
- flüssiges Wägetuch sich beruhigt hat (siehe auch 3.11),
- alle elektromagnetischen Störungen ausgeschlossen werden müssen (Handys, Funkgeräte ausschalten).

3.2 Bei der Durchführung der Wägung ist zu beachten, dass
- das Wägetuch sich vollständig auf der Waagenbrücke befindet und sein Schwerpunkt möglichst über der Brückenmitte liegt,
- Anhänger oder Motorfahrzeuge, die nicht auf der Brücke stehen, abgekuppelt sind (Ausnahmen siehe Nummer 3.8),
- auf der Waagenbrücke sich nur die zum Wägetuch gehörenden Gegenstände befinden,
- Fahrer und Beifahrer das zu wägende Fahrzeug verlassen (außer bei einer Wägung zur Verkehrsüberwachung),
- sich auf oder unmittelbar an der Waagenbrücke keine Personen aufhalten,
- bei achswise Wagen mit hydraulischen oder pneumatischen Ausgleichs- und Federsystemen der Motor läuft,
- Tiere ruhig auf der Waage stehen,
- die Wägeunterlagen in einwandfreiem Zustand sind,
- Ablesung und Abdruck des Wägeergebnisses erst erfolgen, wenn die Anzeige der Waage eingespielt hat.
3.3 Jede Wägung ist mit der an der Waage möglichen Genauigkeit vorzunehmen. Vorschriften und Bedienungsanweisungen sind zu beachten.

3.4 Wägungen dürfen nur bis zur angegebenen Höchstlast (Max) der Waage erfolgen. Die Tragfähigkeit (höchste Belastbarkeit, Lim) der Waage darf auch beim Überfahren der Brücke nicht überschritten werden.

3.5 Wägungen unterhalb der Mindestlast (Min) der Waage sind unzulässig.

3.6 Bei Brutto- und Tarawägung zur Bestimmung der Nettolast muss die Nettolast größer oder gleich der Mindestlast der Waage sein. 7

3.7 Bei der Ermittlung eines Nettoergebnisses aus Tara- und Bruttowägung ist darauf zu achten, dass beide Wägungen unter gleichen Bedingungen erfolgen.

3.8 In der MessEV wird für die „öffentliche“ Wägung die nachstehende Vorgabe nicht mehr erwähnt, sie sollte aber weiterhin beachtet werden, auch für sonstige Wägungen: „Erfolgt in Ausnahmefällen (§ 71 Absatz 1 der am 31. Dezember 2014 geltenden Eichordnung) nicht abgekuppeltes Wägen, so ist darauf zu achten, dass die Anhängerkupplung nicht in der Anhängerkupplung klemmt. Das Wägeergebnis kann sonst durch Druck oder Zug verfälscht werden. In den Wägeunterlagen ist die Angabe „Nicht abgekuppelt gewogen“ zu vermerken.“

3.9 Das Gesamtgewicht von Fahrzeugen darf nur aus zwingenden Gründen durchachsweises Wägen in zwei Teilwägungen8 erfolgen. Hierbei muss das Fahrzeug ungebremst sein. In den Wägeunterlagen sind die ermittelten Achslasten anzugeben und die Angabe „Achtsweise gewogen“ zu vermerken. Der Leitfaden für achsweises statisches Wägen im geschäftlichen und amtlichen Verkehr ist zu beachten. (Siehe Seite 60)

3.10 Auf Straßenfahrzeugwaagen, bei denen die Beruhigungsstrecken vor und hinter der Waagenbrücke nicht mit dieser auf gleicher Höhe liegen und nicht gerade und waagerecht ausgeführt sind, ist achtweise und nicht abgekuppeltes Wägen unzulässig.

3.11 Auf Straßenfahrzeugwaagen ist achtweisiges Wägen unzulässig, wenn das Wägegut flüssig ist.

4 Wägeunterlagen

4.1 Wer eine öffentliche Waage verwendet, muss die Unterlagen über die bescheinigten öffentlichen Wägungen für die Dauer von zwei Jahren, gerechnet ab dem Zeitpunkt der Beendigung des Wiegevorgangs, aufbewahren.

5 Pflege der Waage

5.1 Die Waage und ihre Zusatzeinrichtungen sind regelmäßig so zu pflegen, dass richtige Messergebnisse gewährleistet sind.

5.2 Waagenbrücke und Spalt zwischen Brücke und Rahmen müssen von Wägegutrückständen und Fremdteilen frei sein.

6. Zuwiderhandlungen bei öffentlichen Wägungen

Zuwiderhandlungen gegen die gesetzlichen Vorschriften sind ordnungswidrig und können mit einem Bußgeld von bis zu 20.000 Euro gemäß § 60 Absatz 1 Nummer 16 und Absatz 2 MessEG geahndet werden.

Die für öffentliche Waagen maßgeblichen Passagen der gesetzlichen Vorschriften sind auf der Seite 5 angegeben.

(2016, 2019)

7 Mindestlast bei Netto- und Tara-Wägungen siehe Seite 50.
8 Bei der Verkehrsüberwachung dürfen mehr als zwei Teilwägungen durchgeführt werden.
Vorgaben beim Wägen mit Radlastwaagen

Einführung

Radlastwaagen bieten die Möglichkeit nahezu an jedem Ort Fahrzeuge zu wägen. Der Vorteil gegenüber Brückenwaagen ist, dass man auch Gewichte von Schwertransporten messen kann, die nur für bestimmte Strecken eine (Fahr-) Erlaubnis nach § 29 (3) Straßenverkehrsordnung (StVO) besitzen.

Mit diesen Fahrzeugen kann man nicht mal eben zu einer Brückenwaage fahren, weil entweder die Fahrstrecke nicht zugelassen ist, oder weil die Brückenwaage meistens nur bis zu 50 oder 60 Tonnen zugelassen ist. Schwertransporte sind aber oft weit über 100 Tonnen schwer.

Welche Vorgaben gibt es aber an Ort und Stelle der Wägeaktion?

Zunächst einmal muss Platz genug sein, um den normalen Fahrzeugverkehr nicht zu behindern. Auf Parkplätzen, vorrangig an der Autobahn, sollte eine ebene Strecke ausgewählt werden, die man speziell für die Wägungen ab sperren kann. Eben heißt, dass sich hier keine Buckel und keine Vertiefungen befinden sollen.

Weiterhin ist es wichtig, dass hier kein allzu großes Gefälle und keine allzu große Steigung ist. Es ist zu unterscheiden, ob man nur das Gesamtgewicht feststellen und dann auch gerichtsverwertbar machen will, oder ob auch einzelne Achslasten rechtssicher festgestellt werden sollen.

Im Fall der Feststellung des Gesamtgewichtes darf das Längs- und Quergefälle bis zu 5 Prozent betragen. Bei den Achslasten ist diese Grenze jedoch bei 0,5 Prozent.

Des Weiteren kann ein Niveauausgleich für die Achsen, die nicht auf einer Waage stehen, erforderlich sein. Dieser Ausgleich ist durchzuführen bei Achsen, die sich innerhalb von dem 200-fachen der Bauhöhe der Waage befinden (siehe auch Seite Nr. 5 b Seite 23). Nehmen wir an, es werden zum Beispiel Haenni-Waagen mit einer Bauhöhe von 17 Millimeter benutzt. Dann müssen alle Achsen ausgeglichen (gleiche Höhe wie die Bauhöhe der Waagen) werden, die sich innerhalb von 3,40 Meter befinden. Bei Radlastwaagen mit einer Bauhöhe von 35 Millimeter sind es schon 7 Meter, die ausgeglichen werden müssen. Sind es Achsgruppen, die sich hydraulisch ausgleichen, dann muss die gesamte Achsgruppe auf die gleiche Höhe, wie die Waage gebracht werden. Im Zweifel, wenn nicht bekannt ist, wie viele Achsen sich untereinander ausgleichen, müssen alle Achsen, also das gesamte Fahrzeug auf die gleiche Höhe gestellt werden.

Einfacher geht es, wenn Wägeplätze vorbereitet werden. Damit sind Ausfräsungen, oder Rahmen gemeint, in
die man die Radlastwaagen hineinlegen kann. Sie sind genauso tief, wie die Waagen hoch sind. Somit ist automatisch der Vor- und Nachlauf einer Waage auf gleicher Höhe. Es wird viel Arbeit und Platz gespart.

Zudem liegen die Waagen geschützt und können von der Antriebsachse eines darauf stehenden Fahrzeugs beim Anfahren nicht wegeschleudert werden.

Bewährt haben sich Einbaurahmen, zum Beispiel, die vom Hersteller Haenni für die Radlastwaagen der Typen WL 101, WL 103 und WL 104 gefertigt werden. Bei Bedarf sind hier Nuten vorhanden, in die die Kabel der Waagen geschützt untergebracht werden können.

Diese Rahmen werden in schwundfreiem Beton eingelegt, wobei der Rahmen mit der Fahrbahn davor und dahinter auf gleicher Höhe liegen muss. Die Querstreben, die den Rahmen versteifen dienen gleichzeitig dazu, den dazwischenliegenden Beton sauber abzuziehen, sodass an jeder Stelle eine genaue Tiefe von 17 Millimeter erreicht wird.

Das weitere Vorgehen bei der Wägung, hierzu ist der Leitfaden für das Wägen von Fahrzeugen zur amtlichen Überwachung des öffentlichen Verkehrs zu beachten. (Siehe Seite 21)

Wolfgang Jaspers (2017, 2019)

Fotos: © Wolfgang Jaspers

Datenspeicher und Radlastwaagen – Was ist zu beachten?

Die Speicherung der durch Wägung ermittelten Daten muss eichfähig erfolgen, denn nur die Daten aus dem eichfähigen Speicher sind gerichtsfest.

Bei der Verwendung einer zugelassenen Software ist der eichfähige Datenspeicher enthalten.

Die Verbindung vom Laptop zu den Radlastwaagen wird über LAN- oder WLAN-Verbindung hergestellt.

Die einzelnen Wägeergebnisse mit Tara, laufender Nummer, Datum und Uhrzeit müssen, bevor sie in den eichfähigen Speicher weitergeleitet werden können – auf Anforderung (Betätigen einer bestimmten Taste oder Button) bestätigt werden. Erst danach sind die Daten fälschungssicher im eichfähigen Speicher gespeichert.

Die gespeicherten Daten sind durch Checksummen geschützt und nicht unbemerkt veränderbar.

Der Vorgang des Auslesens des Datenspeichers ist in der Bedienungsanleitung nachzulesen, die jeder zugelassenen Software beigefügt ist.

Weitere Software, zum Beispiel nicht eichfähige Programme zur Weiterverarbeitung der Wägeergebnisse, können vorhanden sein.

Langzeitspeicherung

- Bei Langzeitspeicherung der Wägeergebnisse werden die einzelnen Wägeergebnisse zusammen mit einer Kennzeichnung gespeichert (zum Beispiel Nummer oder Datum und Uhrzeit), so dass im Bedarfsfalle jeder Wägevorgang bzw. jedes Wägeergebnis problemlos zugeordnet und überprüft werden kann. Diese Kennzeichnungen sind auch auf den Belegen, die mit den Zusatzeinrichtungen erstellt werden, anzugeben;
- sind erforderlichenfalls Tara- und Nettowege abzuspeichern, wenn tariert wurde;
- und muss die Überprüfung der gespeicherten Wägeergebnisse für die Beteiligten möglich sein.

- Der Datenspeicher darf nur dann im eichpflichtigen Verkehr verwendet werden, wenn die Software ordnungsgemäß geladen worden ist. Dies sollte mindestens einmal täglich vom Bediener überprüft werden. Ausführliche Erläuterungen dazu müssen in der Bedienungsanleitung enthalten sein.
- Der Benutzer dieses Datenspeichers ist verantwortlich, dass – dieser allein – für eine ausreichende Speicherkapazität und für das Vorhandensein der gespeicherten Wägeergebnisse zu sorgen hat.

Zusammenhang zwischen Anhängelast und Stützlast

Wie wirken physikalische Kräfte?

Nicht das gesamte Gewicht eines Anhängers ruht auf seinen Rädern, ein Teil auch auf der Anhängerkupplung. Rein physikalisch werden so Kräfte über die Räder auf den Boden − und im angekuppelten Zustand zusätzlich über die Anhängerkupplung auf das Zugfahrzeug − geleitet.

Auch wenn gelegentlich anders definiert, zählt die Stützlast, mit der die Anhängerdeichsel auf die Kupplungskugel des Zugwagens drückt, nicht zur Anhängelast. So kann man etwa einen beladenen Caravan mit einem Gesamtgewicht von 1650 Kilogramm legal mit einem Fahrzeug ziehen, das nur für 1600 Kilogramm zugelassen ist – vorausgesetzt, dass bei entsprechender Beladung auch 50 Kilogramm Stützlast vorhanden sind. Allerdings muss diese Stützlast aber dann bei der Zuladung des Autos berücksichtigt werden, denn auch hier dürfen zulässige Grenzen nicht über- oder unterschritten werden. Ein Ausnutzen der Stützlast bedeutet also eine verringerte Zuladung im Zugfahrzeug.
Welche rechtlichen Definitionen gibt es?

Auch die Festlegungen in § 42 der Straßenverkehrszulassungsverordnung (StVZO) werden in diverser Literatur falsch gedeutet. Denn auch hier ist die Anhängelast definiert als die tatsächliche Masse eines Anhängers, den ein bestimmtes Kraftfahrzeug hinter sich herzieht. Falsch bewertet wird nur zum Teil die Aussage, dass sich das „tatsächliche Gesamtgewicht des Anhängers“ aus Achslast zuzüglich Stützlast zusammensetzt.

Weil aber eben nicht die zulässige Gesamtmasse des Anhängers, sondern seine tatsächliche Masse für die Anhängelast entscheidend ist, kann man auch einen Anhänger ziehen, dessen zulässige Gesamtmasse höher ist als die zulässige Anhängelast des Kraftfahrzeugs.

In einer Erläuterung des Bundesverkehrsministeriums ist dann auch zu entnehmen, “dass die am Anhänger zu messende Achslast im angekoppelten Zustand die Anhängelast ist”.

Wo finden sich Angaben über Anhänge- und Stützlast?

Die für das Fahrzeug zulässigen Anhängelasten finden sich
• im Fahrzeugschein:
 o gebremste Anhängelast unter Nummer 28,
 o ungebremste Anhängelast unter Nummer 29,
 o unter Nummer 33 (Bemerkungen) kann noch eine Erhöhung eingetragen sein;
• in der Zulassungsbescheinigung Teil I:
 o gebremste Anhängelast unter 0.1,
 o ungebremste Anhängelast unter 0.2.

Die in den Fahrzeugpapieren eingetragenen Gewichte, dürfen nicht überschritten werden. Das heißt aber nicht, wenn zum Beispiel die Anhängelast 1.000 kg beträgt, dass dann nicht auch ein Anhänger mit 1.300 kg zulässiges Gesamtgewicht gezogen werden darf. In diesem Anhänger darf dann nur 300 kg weniger Nutzlast transportiert werden.

Stützlasten am Fahrzeug und am Anhänger müssen nicht unbedingt gleich sein, es darf jedoch die jeweils niedrigere Stützlast nicht überschritten werden.

Fazit

Die Anhängelast ist die tatsächliche Last des Anhängers, abzüglich der Stützlast, die ein Kraftfahrzeug hinter sich herziehen darf. Ist die zulässige Anhängelast überschritten, ist die Verkehrssicherheit nicht mehr gewährleistet. Es kann zu Schäden am Zugfahrzeug und zum Schlingern des Anhängers kommen. Fahreigenschaften können sich zum Nachteil verändern, im schlimmsten Fall zu Unfällen führen.

Lars Forche (2019)
Es wird zwischen Fehler- und Verkehrsfehlergrenzen unterschieden.

§ 3 Nr. 6. MessEG – **Fehlergrenze** ist die beim Inverkehrbringen und bei der Eichung eines Messgeräts zulässige Abweichung der Messergebnisse des Messgeräts vom wahren Messergebnis. Im Sprachgebrauch auch „Eichfehler“ genannt. Die Fehlergrenze ist die zulässige Abweichung bei der Eichung eines Messgeräts und

§ 3 Nr. 21. MessEG – **Verkehrsfehlergrenze** ist die beim Verwenden eines Messgeräts zulässige Abweichung der Messergebnisse des Messgeräts vom wahren Messergebnis. Im Sprachgebrauch kurz „Verkehrsfehler“. Die Verkehrsfehlergrenze ist die zulässige Abweichung beim Verwenden eines Messgeräts.

Die Fehlergrenzen bzw. Verkehrsfehlergrenzen unterscheiden sich je nach Messgeräteart.

Bei der Wägung von Fahrzeugen und der Benutzung von Waagen als Messgerät im Rahmen der Verkehrsüberwachung, müssen somit vom angezeigten Wägeergebnis der Wert der Verkehrsfehlergrenze abgezogen werden.

Dabei ist es egal, ob eine Wägung auf einer Brückenwaage – **sofern die Brückenwaage nicht zur Achslastmessung benutzt wird** – durchgeführt wurde, oder auf einem oder mehreren Radlastwaagenpaar/en.

Auf dem Typenschild der Waage können die Daten zur Berechnung der Verkehrsfehlergrenze abgelesen werden. Das Typenschild befindet bei den meisten Radlastwaagentypen an der Anzeige der Waage oder bei Brückenwaagen am separaten Display. Erfolgt die Datenübernahme bei Radlastwaagen über einen Laptop, so können die Daten auch hier abgelesen werden.

Wichtig für die Berechnung ist die Genauigkeitsklasse und der e-Wert (Eichwert) der Waage. Brückenwaagen haben in der Regel die Genauigkeitsklasse III (Handelswaage) und Radlastwaagen die Genauigkeitsklasse IIII (Grobwaage).

Definition: Die **Fehlergrenze** ist die höchst zulässige Abweichung, die bei der Prüfung durch das Eichamt (Konformitätsbewertung beim Inverkehrbringen oder wiederkehrende Eichung entsprechend der jeweiligen Eichfrist) nicht überschritten werden darf. Liegt der Wert über dieser Fehlergrenze, wird die Waage nicht geeicht.

Anwendung: Die **Verkehrsfehlergrenze** muss nach jeder Messung vom abgelesenen Wert abgezogen werden. Dieser beträgt bei nichtselbsttätigen Waagen das Doppelte der Fehlergrenze.

Definition: **Teilungswert (d):**
Das ist der Wert in Gewichtseinheiten zur Angabe
– der Differenz zwischen zwei aufeinander folgenden Skalenstrichen bei analoger Anzeige, bzw.
– der Differenz zwischen zwei aufeinander folgenden Anzeigewerten bei digitaler Anzeige.

Definition: **Eichwert (e):**
Das ist der Wert in Gewichtseinheiten für die eichtechnische Zuordnung einer Waage. Anmerkung: Bei Waagen der Klasse III und IIII ist „e“ gleich „d“.
Welche Verkehrsfehlergrenzen tatsächlich abgezogen werden müssen, ergeben sich aus der folgenden Tabelle, die der Richtlinie 2014/31/EU (Anhang I, Nr. 4.1 Tabelle 3 und Nr. 4.2) zu entnehmen ist. Im Sprachgebrauch wird sie auch EU-Waagenrichtlinie genannt.

Tabelle 3: Fehlergrenzen

<table>
<thead>
<tr>
<th>Klasse I</th>
<th>Klasse II</th>
<th>Klasse III</th>
<th>Klasse III</th>
<th>Fehlergrenze</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ≤ m ≤ 50 000 e</td>
<td>0 ≤ m ≤ 5 000 e</td>
<td>0 ≤ m ≤ 500 e</td>
<td>0 ≤ m ≤ 50 e</td>
<td>± 0,5 e</td>
</tr>
<tr>
<td>50 000 e < m ≤ 200 000 e</td>
<td>5 000 e < m ≤ 20 000 e</td>
<td>500 e < m ≤ 2 000 e</td>
<td>50 e < m ≤ 200 e</td>
<td>± 1,0 e</td>
</tr>
<tr>
<td>200 000 e < m</td>
<td>20 000 e < m ≤ 100 000 e</td>
<td>2 000 e < m ≤ 10 000 e</td>
<td>200 e < m ≤ 1 000 e</td>
<td>± 1,5 e</td>
</tr>
</tbody>
</table>

Beispiel: Berechnung der Fehlergrenze beim Inverkehrbringen und bei der Eichung einer Radlastwaage, Genauigkeitsklasse III, Höchstlast 15.000 kg, Eichwert (e) 50 kg

- Fehlergrenze von 0 bis 2.500 kg (50 e) = ± 25 kg (0,5 e)
- Fehlergrenze über 2.500 kg (50 e) bis 10.000 kg (200 e) = ± 50 kg (1 e)
- Fehlergrenze über 10.000 kg (200 e) bis 15.000 kg (300 e) = ± 75 kg (1,5 e)

Es muss in jedem Fall eine Ermittlung der analogen Messabweichung durchgeführt werden. Durch schrittweise Zulage von Gewichtsstücken im Betrag von 0,1 e wird die Belastung solange erhöht bis die Anzeige der Waage zwischen dem vorher festgestellten und dem nächsthöheren digitalen Anzeigewert gleichmäßig wechselt (Schaltpunkt der Digitalanzeige).

In den folgenden zwei Tabellen werden die Verkehrsfehlergrenzen aufgezeigt, die zwecks leichetter Lesbarkeit gleich in kg-Werte geschrieben wurden:

<table>
<thead>
<tr>
<th>VFG</th>
<th>Verkehrsfehlergrenzen (VFG)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klasse III (Handelswaagen, z.B. Brückenwaagen)</td>
</tr>
<tr>
<td></td>
<td>e = 10 kg</td>
</tr>
<tr>
<td>1 e</td>
<td>0 bis 5.000 kg</td>
</tr>
<tr>
<td>2 e</td>
<td>über 5.000 kg bis 20.000 kg</td>
</tr>
<tr>
<td>3 e</td>
<td>über 20.000 kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VFG</th>
<th>Verkehrsfehlergrenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klasse III (Großwaagen, z.B. Radlastwaagen)</td>
</tr>
<tr>
<td></td>
<td>e = 10 kg</td>
</tr>
<tr>
<td>1 e</td>
<td>0 bis 500 kg</td>
</tr>
<tr>
<td>2 e</td>
<td>über 500 kg bis 2.000 kg</td>
</tr>
<tr>
<td>3 e</td>
<td>über 2.000 kg bis 10.000 kg</td>
</tr>
</tbody>
</table>
Beispiele verschiedener Waagen und e-Werte:

Brückenwaage

So, oder ähnlich sieht die Anzeige einer Brückenwaage aus. Auf der Vorderseite erkennt man das Gewicht, die Minimallast, die Maximallast und den e-Wert.

Auf der Rückseite sieht man, dass es sich um eine Han- delswaage der Klasse III handelt. Um hier die korrekte Verkehrsfehlergrenze zu ermitteln muss in die Tabelle VFG - Klasse III gesehen werden, dann unter e-Wert = 20 kg und dann die Spalte in die das gezeigte Gewicht, hier 14.740 kg passt.

Es ist die Zelle, in der minimal 10.000 kg und maximal 40.000 kg steht. Ganz vorn steht dann der abzuziehende Verkehrsfehlergrenze, das ist 2 e (2 x Eichwert = 40 kg)

Definition einer Mehrbereichswaage

Eine Mehrbereichswaage hat mehrere Wägebereiche mit unterschiedlichen Eichwerten (e-Wert), zum Beispiel eine Radlastwaage der Genauigkeitsklasse III: Wägebereich 1 bis 6.000 kg, e = 20 kg und Wägebereich 2 bis 15.000 kg, e = 50 kg.

Siehe das Typenschild auf Seite 35 unten rechts.

Brückenwaage als Mehrbereichswaage

Diese Brückenwaage ist eine Mehrbereichswaage der Klasse III. Auf dem rechten Bild gut zu erkennen, dass bei Gewichten bis zu 30.000 kg ein e-Wert von 10 kg zu berücksichtigen ist und bei Gewichten darüber ein e-Wert von 20 kg.

Da der Gewichtswert über 30.000 kg liegt, muss in der Tabelle VFG - Klasse III in der Spalte unter 20 kg nachgesehen werden. 39.500 kg passt in die mittlere Spalte (zwischen 10.000 kg und 40.000 kg). Ganz vorn ist dann zu sehen, dass hier 2 e als Verkehrsfehlergrenze abzuziehen sind.

Radlastwaage Haenni WL 104

Dies ist die Ansicht auf eine Radlastwaage vom Typ Haenni WL 104.

Wichtige Werte:
- Grobwaage Klasse III - Mindestlast 500 kg
- Maximallast 10.000 kg - e-Wert 50 kg

Hier schaut man auf die Tabelle VFG - Klasse III. Dann in die Spalte 50 kg und darunter sucht man, wo der auf der Waage angezeigte Wert hineinpasst. Ganz vorn wird dann die Verkehrsfehlergrenze abgelesen.
Radlastwaage Haenni WL 101
Das Ziffernblatt der analogen Waage Haenni WL 101
Es ist eine Grobwaage Klasse III, Mindestlast 500 kg, e-Wert 50 kg
Die Verkehrsfehlergrenze ist nachzusehen in der Tabelle VFG - Klasse III unter 50 kg und dann den angezeigten Gewichtswert suchen und ganz vorn den e-Wert ablesen.

Haenni WL 103 Standard
Diese Radlastwaage der Klasse III hat einen e-Wert von 20 kg, wenn sie über einen Rechner an das Software-Programm Haenni EC 200 angeschlossen ist, oder wenn die Gewichtswerte direkt an der Waage abgelesen werden.

Radlastwaage Evocar-2000
Diese Radlastwaage ist eine Mehrbereichswaage.
1. Bereich bis 200 kg (Minimalbelastung) – 6.000 kg (e-Wert 20kg)
2. Bereich von mehr als 6.000 kg bis 15.000 kg (e-Wert 50 kg)
Hier muss man auch wieder in Tabelle VFG - Klasse IIII nachsehen und dann, je nach Gewicht, das angezeigt wird, unter 20 kg oder unter 50 kg nachsehen. Auch hier wieder, entsprechend des
Radlastwaage PAT SAW 10A

Auch diese Radlastwaage ist eine Großwaage der Klasse III.
Auf dem Typenschild wieder zu finden die Minimallast, die Maximallast und der e-Wert.
Zum Nachsehen, wieder die Tabelle VFG - Klasse III anvisieren, unter 50 kg die passende Zelle suchen, in die der Gewichtswert passt, der auf dem Display der Waage zu sehen ist und dann ganz vorn den e-Wert ablesen.

Radlastwaage Haenni WL 108

Bei dieser Waage handelt es sich um eine 3-Tonnen-Waage, die für Fahrzeuge der Sprinterklasse gut geeignet ist.
Es ist auch eine Waage der Klasse III,
Mindestlast 100 kg,
Maximallast 3.000 kg,
e-Wert 10 kg
Hier also nachsehen unter Tabelle VFG - Klasse III, unter 10 kg und ganz vorn den e-Wert ablesen.

Fazit:
Bei den Brückenwaagen, sofern sie nicht zur Achslastmessung benutzt werden, muss nur der e-Wert als Verkehrsfehlergrenze abgezogen werden, der dem angezeigten Gewichtswert entspricht.

Bei den Radlastwaagen muss der e-Wert für jede verwendete Waage abgezogen werden, also bei zwei verwendeten Waagen – Achslastwägung durch einzelne Radlastenwaagen – einmal für die linke Waage und einmal für die rechte Waage. Je nach Belastung kann der e-Wert unterschiedlich sein.

gefertigt und Fotos: Jaspers PHK, PP Dortmund, Dir. V.- VI 3, VD – AP (2019)
Teil 3 – Abschnitt 3
Das Wägen von Kraftfahrzeugen zur Verkehrskontrolle auf Brückenwaagen
(Wilfried Löhmann)

Die Korrekturen zu den geänderten Vorschriften wurden von der BTE-Redaktion ausgeführt!
Die Basis dieser Ausarbeitung sind die auf Seite 5 / Seite 21 genannten Grundlagen.

Durch das polizeiliche Wägen von Kraftfahrzeugen soll die Einhaltung der einschlägigen Vorschriften der Straßenverkehrszulassungsordnung (StVZO) überprüft werden:

- Gesamtgewicht
- Achslasten
- Anhängelast
- Stützlast von Einachsanhängern

In einigen Fällen sind darüber hinaus die in Erlaubnissen und Genehmigungen für den Großraum- und Schwerverkehr für zulässig erklärten Lasten zu überprüfen.

Die Wägungen werden vorzugsweise auf Fahrzeugwaagen durchgeführt.

Für die Durchführung der Wägung sind folgende Vorschriften zu beachten:

<table>
<thead>
<tr>
<th>Vorschriften</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mess- und Eichgesetz und Mess- und Eichverordnung in der Fassung</td>
<td>siehe Seite 5</td>
</tr>
<tr>
<td>Leitfaden für das Wägen von Fahrzeugen zur amtlichen Überwachung des öffentlichen Verkehrs. (Vorschlag)</td>
<td>(Seite 21)</td>
</tr>
<tr>
<td>– Bei achsweisen Wägen gibt es zwei unterschiedliche Abzüge, siehe Seite 22 f) + g)</td>
<td></td>
</tr>
</tbody>
</table>

1. Allgemeine Grundsätze

- Die Waage muss geeicht sein.
- Vor der Wägung muss die Waage in Nullstellung gebracht werden.
- Fahrer und Beifahrer müssen während der Wägung im Fahrzeug bleiben.
- Funkgeräte und Handys in unmittelbarer Nähe zur Anzeige der Waage sollten möglichst ausgeschaltet sein, da diese die Wägeelektronik beeinflussen können.

Zusätzlich bei achsweisen Wägen:

- Die Bremsen des Fahrzeugs müssen gelöst sein, das Getriebe in Leerlaufstellung.
- Bei achsweisen Wägen mit hydraulischen oder pneumatischen Ausgleichs- und Federungssystemen muss der Motor laufen,
- Soweit möglich, sollte sich das Fahrzeug auf der Waagenmitte befinden.
- Die Beruhigungsschläge vor bzw. hinter der Waage müssen eben sein (ohne Gefälle, ohne Spurrillen).
- Die Waage muss für achsweises Wägen geeignet sein.
- Wägungen unterhalb der Mindestlast oder oberhalb der Höchstlast sind nicht zulässig.

2. Wägearten

Grundsätzlich wird zwischen zwei Wägearten unterschieden:

- Einzelwägung
- achsweiser Wägung (Mehrfachwägung)

2.1 Einzelwägung

Von einer Einzelwägung spricht man, wenn sich das zu wägende Fahrzeug/der zu wägende Zug mit allen Achsen auf der Waage befindet, also keine Verbindung zwischen zu wägendem Fahrzeug und der Beruhigungfläche vor oder hinter der Waage besteht.

1 Ab Seite 46 werden Messungen der Stützlast von Einachsanhängern dargestellt.
2 Siehe § 37 Absätze 1, 2, 5 MessEG (Seite 8)
3 Gemäß § 34 StVZO ist das zulässige Gesamtgewicht als das Gewicht des Fahrzeugs mit allen Betriebsmitteln und den Fahrzeuginsassen definiert, daher muss sich das Fahrpersonal bei der Wägung zur Verkehrskontrolle im Fahrzeug befinden.

Toleranzabzüge bei Einzelwägung:
Die Toleranzabzüge entsprechen der Verkehrsfehlergrenze. Abhängig vom Teilungswert \(e = d \) der Waage sind vom Wägeergebnis folgende Toleranzabzüge vorzunehmen:

<table>
<thead>
<tr>
<th>Teilungswert 10 kg</th>
<th>Teilungswert 20 kg</th>
<th>Teilungswert 50 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>bis 5 t:</td>
<td>10 kg</td>
<td>bis 10 t:</td>
</tr>
<tr>
<td>über 5 - 20 t:</td>
<td>20 kg</td>
<td>über 10 - 40 t:</td>
</tr>
<tr>
<td>über 20 t:</td>
<td>30 kg</td>
<td>über 40 t:</td>
</tr>
</tbody>
</table>

2.2 Achsweise Wägung
Von achsweisem Wägen spricht man, wenn sich während der Wägung nicht das gesamte Fahrzeug auf der Waage befindet, sondern nur jeweils eine Achse. Solche Wägungen werden dann durchgeführt, wenn entweder nur Achslasten festgestellt werden sollen oder wenn ein Fahrzeug wegen seiner Abmessungen oder seines Gewichtes nicht in einer Einzelwägung gewogen werden kann.

Das Problem, das sich beim achsweisen Wägen ergibt, ist, dass hierbei erhebliche Ungenauigkeiten auftreten können, die auf folgende Ursachen zurückzuführen sind:

- Fehler der Waage (Verkantung der Waagenbrücke)
- Höhenunterschiede zwischen Waagenbrücke und Beruhigungsflächen
- Unebenheit (Gefälle) der Beruhigungsflächen vor bzw. hinter der Waage
- Kräfte, die beim Fahrzeug selbst auftreten: zum Beispiel Verspannungen in den Federpaketen, nicht gelöste Bremsen etc.

Im neuen „Leitfaden für das Wägen von Fahrzeugen zur amtlichen Überwachung des öffentlichen Verkehrs“ (Vorschlag) werden erstmals verschiedene Toleranzen vom Wägeergebnis abgezogen: 5

a) Ist ein Schild mit der Aufschrift „Achsweises und nicht abgekuppeltes Wägen ist ausnahmslos nicht gestattet. Beim Wägen von Lastzügen muss der Teil, der auf der Waagenbrücke steht, von dem anderen Teil abgekuppelt sein.“6 angebracht, so ist wie folgt zu verfahren: Es sind 1,8 Prozent für zweiachsige Fahrzeuge und 2,7 Prozent für Fahrzeuge mit mehr als zwei Achsen einmalig vom Wägeergebnis abzuziehen. In diesen Abzügen sind dann sämtliche Fehlerquellen berücksichtigt.7

b) Sofern die Prüfung einer Fahrzeugwaage auf Eignung für Achslastwägungen positiv bestätigt wurde (kein Schild vorhanden), ist „Achsweises Wägen zulässig“.8 Daher wird von jedem Teilwägeergebnis, die der Belastung entsprechende Verkehrsfehlergrenze der Waage abgezogen.

5 Im neuen „Leitfaden für das Wägen ...“ gibt es zwei verschiedene Abzüge von den Wägewerten − siehe Seite 22 Nr. 3 f) + g)! 6 Grundlage siehe Seite 19 Auszug Reglerermittlungsausschuss, Spiegelstrich „Achsweises Wägen“. 7 Hierzu wurden von der Physikalisch-Technischen Bundesanstalt umfangreiche Untersuchungen angestellt und in einem Grundsatzgutachten der PTB zur Verwägung von Straßenfahrzeugen (PTB-Mitteilung 5/1984, Seite 344) dargelegt. 8 Es sollte in jedem Fall die Beruhigungsstrecke vor und hinter der Waage in Augenschein genommen werden. Siehe dazu auch Seite 22 Nr. 3.
3. Unzulässige Wägearten

a) Seitenweises Wägen ~ Diese Wägeart ist unzulässig, da die neben der Waage befindlichen Flächen ~ anders als die Beruhigungsschichten vor und hinter der Waage ~ als nicht zur Waage gehört betrachtet werden. Ferner ist eine Abschätzung der hierbei auftretenden Seitenkräfte nicht möglich, so dass keine sinnvollen Toleranzabzüge vorgenommen werden können.

b) Unzulässig sind Wägungen, die den Wägebereich der Waage überschreiten oder unterhalb der Mindestlast liegen.

c) Wird bei einer Wägung der Wägebereich der Waage überschritten (beispielsweise 50 Tonnen), so lässt das zwar den logischen Schluss zu, dass das Gewicht des Fahrzeugs eben höher sein muss als 50 Tonnen, verwertet werden darf jedoch nur ein abgelesener Wert, der maximal der Höchstlast der Waage entspricht!

d) Unzulässig ist achsweises Wägen, wenn das Wägegut flüssig ist oder die Waage dafür nicht geeignet ist.

<table>
<thead>
<tr>
<th>Anhang 1 (Wägeprotokoll)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polizei</td>
</tr>
<tr>
<td>Ort:</td>
</tr>
<tr>
<td>Tel.:</td>
</tr>
<tr>
<td>Tgb.-Nr.:</td>
</tr>
<tr>
<td>Wägeprotokoll</td>
</tr>
<tr>
<td>1. Fahrzeugangaben</td>
</tr>
<tr>
<td>Fahrzeugart</td>
</tr>
<tr>
<td>Anzahl Achsen</td>
</tr>
<tr>
<td>Kennzeichen</td>
</tr>
<tr>
<td>Zugfahrzeug:</td>
</tr>
<tr>
<td>Anhänger:</td>
</tr>
<tr>
<td>2. Angaben über das Wägeverfahren</td>
</tr>
<tr>
<td>Waage: Eichwert (e = d):</td>
</tr>
<tr>
<td>kg</td>
</tr>
<tr>
<td>öffentliche Waage</td>
</tr>
<tr>
<td>angekoppelt</td>
</tr>
<tr>
<td>abgekoppelt</td>
</tr>
<tr>
<td>geeichte Betriebswaage</td>
</tr>
<tr>
<td>nullstellt manuell</td>
</tr>
<tr>
<td>nullstellt automatisch</td>
</tr>
<tr>
<td>Achsweises Wagen zugelassen</td>
</tr>
<tr>
<td>ohne Spurflächen</td>
</tr>
<tr>
<td>Beruhigungsschichten vor und hinter der Wägung</td>
</tr>
<tr>
<td>Wägeregebnisse</td>
</tr>
<tr>
<td>Einzelwäge</td>
</tr>
<tr>
<td>Einzelwäge</td>
</tr>
<tr>
<td>Einzelwäge</td>
</tr>
<tr>
<td>Anzahl der Achsen des Fahrzeugs / Achsweises Wägung</td>
</tr>
<tr>
<td>mehr als 2 Achsen</td>
</tr>
<tr>
<td>mehr als 2 Achsen</td>
</tr>
<tr>
<td>mehr als 2 Achsen</td>
</tr>
<tr>
<td>festgestellte Gewichte in kg</td>
</tr>
<tr>
<td>Zulässige Gewichte in kg</td>
</tr>
<tr>
<td>Toleranz in %</td>
</tr>
<tr>
<td>Toleranz in kg</td>
</tr>
<tr>
<td>Vorverbares Gewicht abs. Toleranz</td>
</tr>
<tr>
<td>Vorverbares Überschreitung in kg</td>
</tr>
<tr>
<td>Überschreitung in Prozent</td>
</tr>
<tr>
<td>Die Wägebelege sind als Anlage beigefügt.</td>
</tr>
<tr>
<td>Bemerkungen:</td>
</tr>
<tr>
<td>(Unterschrift)</td>
</tr>
</tbody>
</table>
Anhang 2 (Beispiele)

Einzelwägungen auf Fahrzeugwaagen
(Toleranzabzug: siehe Tabelle Seite 38)

Gesamtgewicht von Einzelfahrzeugen oder Zügen

Anmerkung: Der Anhänger ist im Regelfall abzukuppeln, um Kräfte, die durch die Anhängevorrichtung übertragen werden können, auszuschließen.

Wird das Fahrzeug mit angekuppeltem Hänger verwogen, ist dieses auf der Wägekarte zu vermerken.

Tatsächliches Gesamtgewicht bei Einachsanhänger hinter Fahrzeugen der Klasse M1

Tatsächliches Gesamtgewicht = Achslast zuzüglich Stützlast
(Anhänger abgekuppelt, Zugfahrzeug außerhalb der Waage)

Einachsanhänger (angekuppelt) zur Bestimmung der Anhängelast

\[\text{Anhängelast}^2 = \text{Achslast} \]

(Anhänger angekuppelt, Zugfahrzeug außerhalb der Waage)

Stützlast zählt zum Zugfahrzeug

Zentralachs-Anhänger zur Bestimmung der Anhängelast hinter allen Fahrzeugklassen außer M1

\[\text{Anhängelast}^2 = \text{Achslast} \]

(Anhänger angekuppelt, Zugfahrzeug außerhalb der Waage)

Stützlast zählt zum Zugfahrzeug

Zentralachsanhänger mit einer Stützlast von über 1.000 Kilogramm sind nicht mehr als Zentralachsanhänger zu behandeln, sondern wie Sattelanhänger.

Achtung: Einachs- und Zentralachsanhänger^A angekuppelt wägen stellt kein achsweises Wägen dar! Hier nur der Abzug der entsprechenden Verkehrstoleranzen!

Dieses Wägeverfahren darf ausschließlich zur Ermittlung der Anhängelast und der Stützlast (siehe Seite 49) verwendet werden.^B

^2 Definition Anhängelast: Straßenverkehrs-Zulassungs-Ordnung (StVZO), § 42 Anhängelast hinter Kraftfahrzeugen und Leergewicht.

^3 Siehe Richtlinie 2007/46/EG i.V.m. mit Richtlinie 97/27/EG, Anhang I Abschnitt 2.2.4.

^B Der Anfahrtbereich zur Wägung der Anhängelast muss auf gleicher Höhe wie die Waagenbrücke liegen sowie gerade, eben und waagerecht ausgeführt sein. Zur Erhöhung der Beweiskraft im Beanstandungsfall sollten die baulichen Gegebenheiten der verwendeten Waage (Neigung des Anfahrtbereiches, Höhenunterschied zur Waagenbrücke) und Position des Zugfahrzeuges vor der Waagenbrücke bei der Kontrollverwagung dokumentiert werden.
Achsweises Wägen auf Fahrzeugwaagen
Verfahrensweise bei Toleranzen siehe Seite 38 Nr. 2.2 a) und b)

a) Schild vorhanden: „Achsweises und nicht abgekoppeltes Wägen ist ausnahmslos nicht gestattet...“
Toleranzabzug: 1,8 Prozent bei zweiachsisen Fahrzeugen,
2,7 Prozent bei Fahrzeugen mit mehr als zwei Achsen

oder

b) „Achsweises Wägen zulässig“: Von jedem Teilwägergebnis, wird die der Belastung entsprechende Verkehrsfehlergrenze der Waage abgezogen. (siehe Tabelle Seite 38)

Achslasten des Einzelfahrzeugs

Achslast des Sattelanhängers

Anmerkung: Zusammengehörende Achsaggregate sollten nach Möglichkeit zusammen gewogen werden.

Gesamtgewicht des Zugfahrzeuges

Hinterachslast der Sattelzugmaschine
(zwei- und dreiachsige Zugmaschinen)

1. Feststellung der Vorderachslast der Zugmaschine
2. Feststellung des Gesamtgewichtes der Zugmaschine
3. Berechnung der Hinterachslast durch Subtraktion:

Hinterachslast = Gesamtgewicht − Vorderachslast

Hinterachslast der Sattelzugmaschine
(vierachsige Zugmaschinen)

1. Feststellung der Vorderachslast der Zugmaschine
2. Feststellung des Gesamtgewichtes der Zugmaschine
3. Berechnung der Hinterachslast durch Subtraktion:

Hinterachslast = Gesamtgewicht − Vorderachslast

Die Sonderfälle folgen auf der nächsten Seite.

4 Grundlage siehe Seite 19 Auszug Regelermittlungsausschuss, Spiegelstrich „Achsweises Wägen".
Sonderfälle:

Gesamtgewicht der Sattelzugmaschine höher als Wägebereich der Waage

In diesem Fall sollte bei der zweiten Wägung nur die erste der beiden Hinterachsen gewogen werden und das Gewicht dieser Achse durch Subtraktion berechnet werden. Gehändet werden kann hier dann nur die Achslastüberschreitung.

Wägung von Dolly-Achsen

1. Feststellung des Gesamtgewichts der Sattelzugmaschine
2. Feststellung des Gewichts der Zugmaschine und der Dolly-Achse
3. Berechnung des Gewichts der Dolly-Achse durch Subtraktion: Wägung 2 minus Wägung 1

Feststellung von Überladungen bei Schwertransportfahrzeugen durch Überprüfung der Drücke in den hydraulischen Achssystemen
(Wilfried Löhmann)

1. Eingangsbetrachtung

Selbstverständlich ist die nachstehend dargestellte Berechnung der Gewichte nicht ausreichend als Beweismittel in Bußgeldverfahren, da aufgrund verschiedenartiger Bauweisen der Fahrzeuge doch erhebliche Unterschiede in den hydraulischen Drücke auftreten können und ferner weder eine Einbau- noch Eichpflicht für diese Geräte besteht. Dennoch kann die Auswertung der Anzeigewerte wertvolle Grundlagen für nachfolgende polizeiliche Maßnahmen wie Kontrollwägungen, Untersagungen der Weiterfahrt etc. liefern.

2. Allgemeines

Sind bei Fahrzeugen des Schwerlastverkehrs nicht die genauen Ladungsgewichte bekannt, ist es oft schwer, vorhandene Überladungen zu erkennen, wenn nicht augenfällige Erscheinungen (zum Beispiel stark walkende Reifen, starkes Durchbiegen der Ladefläche oder ein auffallend schwerfälliges Fahrverhalten) unübersehbar Hinweise auf die Überschreitung der zulässigen Gewichte liefern.

Sind die Fahrzeuge allerdings mit hydraulischen Achssystemen ausgerüstet, ist es meistens möglich, durch Überprüfung der Drücke in den Hydrauliksystemen die vorhandenen Achslasten und Aufliegelasten zu errechnen, da die Fahrzeuge meistens mit Manometern ausgerüstet sind, von denen die jeweiligen Drücke abgelesen werden können.

3. Funktionsprinzip hydraulischer Achssysteme

Hydraulische Achssysteme werden meistens verwandt bei Sattelanhängern (Tiefladern) mit aus tauschbaren Ladeflächen (Tiefbettbrücken, Kesselbrücken). Durch die Hydraulik ist es möglich, die Fahrzeuge bei Bedarf abzusenken oder anzuhoben, um sie an die Abmessungen des Transportgutes anzupassen oder aber um die Be- und Entladevorgänge bzw. das Zusammenstellen der Fahrzeugkombinationen zu ermöglichen. Ausgestattet sind die Fahrzeuge dazu mit drei oder vier hydraulischen Regelkreisen, die folgenden Aggregaten zugeordnet sind:

- Aufliegerachsen hinten links
- Aufliegerachsen hinten rechts
- Sattelkröpfung
- Dolly-Achssystem (soweit vorhanden)

4. Schematische Darstellung des Hydrauliksystems
(Hinterachse links und Kröpfung)

Die hintereinander liegenden Räder der Aufliegerhinterachsen jeder Seite sind dabei durchgehend miteinander verbunden, so dass auf allen Rädern der jeweiligen Seite der gleiche Achsdruck herrscht.
Der Druck in den Hydraulikleitungen steigt proportional mit der Belastung des Fahrzeugs und kann an den zugehörigen Manometern abgelesen werden.

Aus den von den Manometern angezeigten Drücken in den Hydrauliksystemen können die Achs- bzw. Satteldrücke anhand von Diagrammen ermittelt werden, die normalerweise am Fahrzeug angebracht sind.

5. Diagramm

Das Diagramm veranschaulicht den Zusammenhang zwischen den vorhandenen Achs- und Sattellasten und den zugehörigen Drücken.

Bei der Anwendung des Diagramms (Goldhofer) ist Folgendes zu beachten:

Da die Drücke jeweils für eine Halbseite des Fahrzeuges angezeigt werden, für die rechtliche Beurteilung aber die achsweise Betrachtung erforderlich ist, muss aus den angezeigten Werten für die jeweiligen Aggregate der Mittelwert gebildet werden.

Beispiel:

Sattelkröpfung 130 bar hinterer Kreis links 110 bar
Dolly-Achse 100 bar hinterer Kreis rechts 130 bar
Sattellast 16 t Mittelwert 120 bar
Achsdruk Dolly 10 t Achslast 12 t

5. Beispiel für die Gewichtsberechnung eines Schwertransportfahrzeuges

Technische Daten:

zulässiges Gesamtgewicht Sattelzugmaschine 27.500 kg
Leergewicht 12.000 kg
Nutzlast (Sattellast) 15.500 kg

Achslast Anhänger (pro Achse) 10.000 kg

Festgestellte Drücke:

Sattelkröpfung 140 bar = 20.000 kg
Achsen Anhänger 130 bar = 13.000 kg

Überladungen bei Schwertransportfahrzeugen

Aus diesen Werten ergeben sich folgende Gewichtsüberschreitungen:

Überladung der Sattelzugmaschine (Tatsächliche Sattellast – Nutzlast) um 4.500 kg
Überladung des Anhängers pro Achse um 3.000 kg

Für die Beurteilung der Sattelzugmaschine ist dabei Folgendes zu berücksichtigen:
Rechnerisch ergibt sich für die Überladung eine Überschreitung des zulässigen Gesamtgewichtes um 20 Prozent. Da wegen der Anordnung der Sattelkupplung über den Hinterrächen die Last in der Hauptsache auf diese Achsen wirkt, dürfte die Überschreitung der Achsgewichte noch um ein Vielfaches höher liegen.

(1997/2019)

Eigengewichte von Systembauteilen für Schwertransportaufflieger

<table>
<thead>
<tr>
<th>Sattelkröpfungen</th>
<th>Eigengewichte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sattellast 24.000 kg - 25.000 kg</td>
<td>4.850 kg - 5.100 kg</td>
</tr>
<tr>
<td>Ladebetten</td>
<td></td>
</tr>
<tr>
<td>8,50 -12,50 m ausziehbar / 2,75 - 3,25 m breit</td>
<td>9.200 kg</td>
</tr>
<tr>
<td>7,00 m Baggerbett / 3,00 m breit</td>
<td>8.000 kg</td>
</tr>
<tr>
<td>4,00 m Bettverlängerung / 2,75 m breit</td>
<td>2.000 kg</td>
</tr>
<tr>
<td>2,00 m Bettverlängerung / 2,75 m breit</td>
<td>1.000 kg</td>
</tr>
<tr>
<td>8,00 m Baggerbett / 3,00 m breit</td>
<td>7.500 kg</td>
</tr>
<tr>
<td>8,50 m Baggerbett / 3,00 m breit</td>
<td>8.000 kg</td>
</tr>
<tr>
<td>8,00 m Kesselbrücke / 3,00 - 5,25 m breit</td>
<td>8.000 kg</td>
</tr>
<tr>
<td>Kesselbrückenverlängerungsträger je</td>
<td>750 kg</td>
</tr>
<tr>
<td>8,20 m Flachbett / 2,75 - 3,25 m breit</td>
<td>6.500 kg</td>
</tr>
<tr>
<td>Fahrwerke</td>
<td></td>
</tr>
<tr>
<td>2-achsige Fahrwerke</td>
<td>5.860 kg</td>
</tr>
<tr>
<td>3-achsige Fahrwerke</td>
<td>8.440 kg</td>
</tr>
<tr>
<td>4-achsige Fahrwerke</td>
<td>10.990 kg</td>
</tr>
<tr>
<td>5-achsige Fahrwerke</td>
<td>13.000 kg</td>
</tr>
</tbody>
</table>

1 Die Gewichte wurden ermittelt bei den Bauteilen der Goldhofer THP-Reihe – sie können bei anderen Herstellern abweichen, dürften aber bei baugleichen Geräten ähnliche Werte aufweisen.
Teil 3 – Abschnitt 4
Messung der Stützlast von Einachsanhängern

1. Einleitung

2. Durchführung einer Stützlast-Wägung

a) Eignung der (Prüf-) Waage feststellen (Aufstellung, Mindestlast, Eichung),
b) Höhe der Anhängerkupplung im noch angekuppelten Zustand messen,
c) Stützlaststempel auf (Prüf-) Waage stellen, Stütze einbauen und auf die gerade gemessene Höhe justieren,
d) Nullstellung der Waage sicherstellen,
e) Anhänger aufsitzen und tatsächliche Stützlast ermitteln,
f) Prüfmittel, Werte und Ergebnisse präzise dokumentieren.

Toleranzabzüge bei Einzelwägungen:
Die Toleranzabzüge entsprechen der Verkehrsfehlergrenze. Abhängig vom Teilungswert (e = d) und der Belastung der Waage sind vom Wägeergebnis folgende Toleranzabzüge vorzunehmen.
Beispiel:
Waage Klasse IIII, Eichwert 10 kg, Belastung 1.800 kg. In der jeweiligen Tabelle (hier Klasse IIII) und dem vorhandenen Eichwert (hier 10 kg) den entsprechenden Lastbereich suchen (hier über 0,5 bis 2,0 t) und die angegebene Verkehrsfehlergrenze (hier 2 e = 2 x 10 kg = 20 kg) zum Vorteil des Betroffenen auslegen (in diesem Fall abzuziehen).

<table>
<thead>
<tr>
<th>Waagen der Klasse III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eichwert "e"</td>
</tr>
<tr>
<td>Belastung</td>
</tr>
<tr>
<td>Belastung</td>
</tr>
<tr>
<td>Belastung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Waagen der Klasse IIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eichwert "e"</td>
</tr>
<tr>
<td>Belastung</td>
</tr>
<tr>
<td>Belastung</td>
</tr>
<tr>
<td>Belastung</td>
</tr>
</tbody>
</table>
Stützlast-Wägung

Gewerkschaft Mess- und Eichwesen BTE

3. Wägungen mit Waagen der Klasse III oder IIII

a) Klasse III

Hier wird die Wägung der Stützlast auf einer Plattformwaage der Klasse III mit 200 kg Höchstlast, einer Mindestlast von 2 kg und einem Eichwert/Teilungswert von 0,2 kg durchgeführt. Achtung! Eine Höchstlastüberschreitung der Waage ist unbedingt zu vermeiden.

Von dem Anzeigewert 193,0 kg ist noch die Verkehrsfehlergrenze in Höhe von 0,4 kg (2 x Eichwert) abzuziehen. Das vorwerfbare Ergebnis ist 192,6 kg.

b) Klasse IIII

Hier erfolgt die Wägung (Anzeigewert = 190 kg) auf einer Radlastwaage der Klasse IIII mit 3.000 kg Höchstlast, einer Mindestlast von 100 kg und einem Eichwert/Teilungswert von 10 kg. Von dem Anzeigewert 190 kg ist noch die Verkehrsfehlergrenze in Höhe von 10 kg (1 x Eichwert) abzuziehen. Das vorwerfbare Ergebnis ist 180 kg.

Mögliches Zubehör, zum Beispiel HAENNI Stempel mit Teleskopstütze
Dimensionen: 0,24 m x 0,24 m, 65 mm hoch, 290 bis 480 mm mit Stütze
Gewicht: 8 kg, mit Teleskopstütze: 9,5 kg; Werkstoff: Aluminiumlegierung, Gummi
Mit Hilfe dieses Stempels können auf Flachplattformwaagen auch Punktlasten gewogen werden, so zum Beispiel das Wägen der Last über das Stützrad.
Wird der Stempel mit der Teleskopstütze ausgerüstet, ist auch das Wägen der Stützlast über die Anhängerkupplung möglich.
4. Wägung über das Stützrad mit Berechnung des Gewichtes an der Kugelkupplung

Die Waage mit einer konkaven Kraftverteilungsplatte (siehe Abb. 1) unter dem Stützrad aufbauen. Waage auf Null setzen. Vor der Wägung sind zusätzlich jeweils am Boden die Längen mit einem Gliedermaßstab (siehe Abb. 2) oder Maßband (Klasse III) von der Mitte der Radachse zum Stützrad/Mitte konkav ausgeformter Platte auf der Waage und der Kugelkupplung zu messen (siehe Abb. 3).

Vor der Ableseung des Wägergebnisses die Keile vom Reifenkontakt geringfügig lösen, damit das Stützrad in der konkaven Platte mittig steht.

Beispiel aus der Praxis:
Wägung auf einer Radlastwaage WL 108:
Klasse III, d = e = 10 kg, Mindestlast 100 kg, Maximallast 3.000 kg
Die Wägung ergab 130 kg. Die Verkehrsfehlergrenze wird bis 500 kg Belastung mit 1 e = 10 kg abgezogen.

Errechnete Stützlast [kg] = (Länge Stützrad [cm] − 5 cm) x (Gewichtsanzeige Waage [kg] − Verkehrsfehlergrenze [kg])
(Länge Kugelkupplung [cm] + 5 cm)

Errechnete Stützlast [kg] = (172 cm − 5 cm) x (130 kg − 10 kg)
(243 cm + 5 cm) = 80,8 kg = 80 kg

Abgerundet auf 80 kg (Streichung Nachkommastellen) als vorwerfbarer errechneter Stützlast.
Für die Berechnung der Stützlast steht eine Exceltable zur Verfügung. Bitte anfordern unter Redaktion@bte.dbb.de.

Abbildung 3
rot = Waage
blau = konkave Platte zur Lastverteilung auf der Waage
zulässige Stützradausrichtung
oder

Abbildung 1
Abbildung 2
Abbildung 3
Weitere Hilfsmittel zur Steigerung der Genauigkeit: Flachwinkel, Lot
Zum Beispiel:
Wägeplattform Klasse III, 1,5 t Max; Min 10 kg; e 0,5 kg

© HAEJNI
© kontur-vid fotolia
© AS-Wägetechnik
5. Wägung auf der Straßenfahrzeugwaage

Erste Wägung
(Zugfahrzeug mit angekuppeltem Anhänger)

Zweite Wägung
(Zugfahrzeug bei abgekuppeltem Anhänger)

Beispiel 1:
Fahrzeugwaage Klasse III, Höchstlast 30 t, Mindestlast 200 kg, Eichwert 10 kg
Erstwägung: 2.900 kg; Zweitwägung: 2.200 kg; Verkehrsfehlergrenze: 10 kg
Errechnetes Ergebnis = 2.900 kg − 2.200 kg = 700 kg − (2 x 10 kg) = 680 kg

Beispiel 2:
Fahrzeugwaage Klasse III, Höchstlast 30 t, Mindestlast 200 kg, Eichwert 10 kg
Erstwägung: 1.200 kg; Zweitwägung: 1.100 kg; Verkehrsfehlergrenze: 10 kg
Errechnetes Ergebnis = 1.200 kg − 1.100 kg = 100 kg − (2 x 10 kg) = 80 kg
Die vorwerfbare Stützlast beträgt 80 kg. Beide Wägungen fanden oberhalb der Mindestlast statt.

Beispiel 3:
Fahrzeugwaage Klasse III, Höchstlast 30 t, Mindestlast 200 kg, Eichwert 10 kg
Erstwägung: 5.100 kg (Verkehrsfehlergrenze: 20 kg); Zweitwägung: 4.850 kg; (VFG: 10 kg)
Errechnetes Ergebnis = 5.100 kg − 4.850 kg = 250 kg − (1 x 20 + 1 x 10 kg) = 220 kg
Die vorwerfbare Stützlast beträgt 220 kg. Beide Wägungen fanden oberhalb der Mindestlast statt.

Anmerkung:
Wenn bei der Wägung eine Waage mit einem zu großem Eichwert (zum Beispiel e = 50 kg) benutzt wird und sich eine sehr geringe Stützlast ergibt, kann das Ergebnis auch null sein. Die vorgenannte Messung der Stützlast könnte auch mit vier Radlastwaagen und zwei Ausgleichsmatten für den Anhänger durchgeführt werden.

(2) Der Anfahrtbereich zur Wägung des Fahrzeuges mit Einachsanhänger, hier zur Ermittlung der Stützlast, muss auf gleicher Höhe wie die Waagenbrücke liegen sowie gerade, eben und waagerecht ausgeführt sein. Zur Erhöhung der Beweiskraft im Beanstandungsfall sollten die baulichen Gegebenheiten der verwendeten Waage (Neigung des Anfahrtbereiches, Höhenunterschied zur Waagenbrücke) und Position des Zugfahrzeuges vor der Waagenbrücke bei der Kontrollverwägung dokumentiert werden.
Mindestlast bei Nettowerten\(^1\), die aus Brutto- und Tarawägung errechnet werden

Gemäß § 33 MessEG dürfen Werte für Messgrößen im geschäftlichen oder amtlichen Verkehr oder bei Messungen im öffentlichen Interesse nur dann angegeben oder verwendet werden, wenn zu ihrer Bestimmung ein Messgerät bestimmungsgemäß verwendet wurde und die Werte auf das jeweilige Messergebnis zurückzuführen sind. (Seite 7/8)

Gemäß § 23 Abs.1 Nr. 1 Buchstabe c MessEV dürfen Messgeräte nur innerhalb des zulässigen Messbereichs eingesetzt werden. (Seite 13)

Werden auf dieser Weise Nettowerte aus zwei Messwerten errechnet\(^2\), die sehr nahe beieinanderliegen (es wird ein Nettowert kleiner der Mindestlast 20 e oder 10 e erwartet), dann kann angenommen werden, dass die Messfehler bei den Messungen annähernd gleich groß sind und sich somit bei der Errechnung der Differenz (Nettogewicht) aufheben.

Der verbleibende Fehler ist im ungünstigsten Fall der doppelte Rundungsfehler 1,0 e. Daher sollte der errechnete Wert bei Messungen zur amtlichen Überwachung des Verkehrs grundsätzlich weiterhin um die doppelte Verkehrsfehlergrenze der verwendeten Waage zu Gunsten des von der Messung Betroffenen korrigiert werden.

\(^{1}\) Die Eichbehörden der Länder haben hierzu eine abweichende Haltung eingenommen. Sie vertreten die Meinung, dass auch bei Differenzwägungen, dass Nettogewicht über der Mindestlast der Waage liegen muss.

Teil 4 – Fit für Wägeaufgaben? – Fragen und Antworten –

Zu folgenden Fragen gibt es keinen Antwortkatalog, vielmehr ist auf jede Frage eine Antwort in der Broschüre zu finden:

I. Rechtsfragen
1. Was ist der Unterschied zwischen Konformitätsbewertung und Eichung?
2. Welche Vorschriften gelten für die Verwendung von „Messwerten“?
3. Was ist der Unterschied zwischen Fehlergrenze und Verkehrsfehlergrenze?
4. Was bedeutet folgende Kennzeichnung in Bezug auf die Eichfrist?
5. Was bedeutet „Eichwert“ und „Teilungswert“?

II. Sachkunde Waagen – allgemein
1. Was muss vor jeder Wägung beachtet werden?
2. Woran ist das „Inverkehrbringen“ bzw. die Eichung einer Waage erkennlich?
3. Was ist zu tun, wenn Zweifel an der Richtigkeit der Waage bestehen?
4. Sollen bei elektronischen Waagen Handys oder Funkgeräte ausgeschaltet werden?
5. Wann läuft die Eichfrist einer Waage vorzeitig ab?
6. Wo soll der Schwerpunkt des Wägegutes möglichst liegen?
7. Was ist zu tun, wenn die errechnete Nettolast kleiner als die Mindestlast der Waage ist?
8. Müssen Fahrer oder weitere Mitfahrer eines zu wägenden Fahrzeuges während der Wägung ihr Fahrzeug verlassen?
9. Wann darf mit einer reparierten Waage weitergearbeitet werden?
10. Wieviel Teilwägungen sind beim achsweisen Wägen auf Straßenfahrzeugwaagen zulässig?
11. Darf flüssiges Wägegut achsweise verwogen werden?
12. Wann muss eine Straßenfahrzeugwaage (Höchstlast über 50 t) wieder geeicht werden?
13. Eine Brückenwaage hat eine Mindestlast von 400 kg. Ist es statthaft, mit dieser Brückenwaage Stützlasten von Pkw-Anhängern bis 150 kg zu wiegen?
14. Wann muss eine Plattformwaage (Höchstlast bis 500 kg) wieder geeicht werden?

III. Sachkunde zusätzlich für öffentliche Waagen
1. Welchen Charakter haben Bescheinigungen, Wägekarten oder Wägescheine?
2. Welche Angaben muss die Bescheinigung außer dem Wägeergebnis noch enthalten?
3. Darf der öffentliche Wäger Wägungen, an denen der Waagenbesitzer oder er selbst ein unmittelbares Interesse besitzen, unterschreiben?
4. Was ist auf der Wägeunterlage zu vermerken, wenn aus zwingenden Gründen Fahrzeuge achsweise gewogen werden?
5. Dürfen Sie Wägungen, die von einem Kollegen vorgenommen wurden, unterschreiben?
6. Wie muss eine öffentliche Waage nach außen gekennzeichnet werden?
7. Dürfen Wägebelege, die der Verkehrskontrolle dienen, unterschrieben werden?
8. Muss der Betrieb einer öffentlichen Waagen gemeldet werden? Und wenn ja, wem und was muss gemeldet werden?

IV. Sachkunde für Waagen zur Verkehrsüberwachung
2. Welche Eichfrist hat eine Radlastwaage?
3. Eine Radlastwaage hat eine Mindestlast von 200 kg. Ist es statthaft, mit dieser Radlastwaage Stützlasten von Pkw-Anhängern bis 150 kg zu wiegen?
4. Was ist zu tun, wenn die Länge der Waagenbrücke für die Gesamtlänge der zu verwiegenden Fahrzeugkombination nicht ausreicht?
5. Was ist eine kombinierte Wägung?
7. Wie ist eine Stützlastwägung durchzuführen?
V. Beispiele aus der Praxis für Wägungen auf einer öffentlichen Waage
(Zur Kontrolle finden Sie die Antworten im Kurztext am Schluss der Beispiele.)

1.) Ein Lkw der Speditionsfirma, bei der Sie beschäftigt sind, wird in der Nähe Ihres Firmengeländes bei einer polizeilichen Kontrolle mit unzulässig hohem Gesamtgewicht festgestellt. Mit dem Lkw werden Baustoffe für Fremdfirmen transportiert. Zur Feststellung des exakten Fahrzeuggewichtes will die Polizei eine Wägung auf der öffentlichen Waage Ihrer Firma vornehmen, die Sie als öffentliche Wägung durch Unterschrift bestätigen sollen. Wie verhalten Sie sich? Begründen Sie!

2.) Die Speditionsfirma, bei der Sie beschäftigt sind, hat einen Großauftrag für den Transport von Getreide für eine Fremdfirma erhalten, bei dem die Bezahlung unter anderem in Abhängigkeit von der zu transportierenden Gesamtmenge erfolgen soll. Da sich das Getreidesilo in unmittelbarer Nachbarschaft Ihres Firmengeländes befindet, sollen die Wägungen auf der Ihrer Firma gehörenden öffentlichen Waage vorgenommen werden. Damit sie als öffentliche Wägungen bestätigt werden können, wird entgegen der sonst üblichen Handeingabe der Leergewichte eine Erst- und Zweitwägung (vor und nach Beladung der Lkw) vorgenommen. Ist diese Maßnahme ausreichend zur Bestätigung durch Unterschrift?

3.) Nach einem Defekt an Ihrer öffentlichen Straßenfahrzeugwaage wurde durch eine Servicefirma eine Reparatur bzw. Instandsetzung vorgenommen, bei der messtechnisch bedeutsame Teile der Waage erneuert wurden. Nach erfolgter Reparatur bzw. Instandsetzung konnte durch Vergleichswägungen auf anderen geeichten Waagen festgestellt werden, dass keine größeren Unterschiede zu Ihrer Waage als die zulässige Verkehrsfehlergrenze aufgetreten ist. Dürfen Sie Ihre Waage, die erst zwei Monate vor der Reparatur bzw. Instandsetzung geeicht worden ist, weiter für öffentliche Wägungen nutzen?

4.) Sie führen eine öffentliche Wägung zur Bestimmung des tatsächlichen Gesamtgewichtes eines Lkw zur Verkehrs kontrolle für die Polizei durch. Der Fahrer und Beifahrer sollen laut Anweisung der Polizei im Lkw verbleiben. Dürfen Sie die Wägung durch Unterschrift bestätigen?

Die Antworten stellen die Meinung der Verfasser dar!

zu Beispiel 1.)
- Ablehnung wegen des Firmeninteresses am Wägeergebnis.
zu Beispiel 2.)
- Nein, ebenfalls Ablehnung wegen des Firmeninteresses am Wägeergebnis. Es erfolgt eine abhängige Bezahlung der Transportleistung über das Wägeergebnis.
zu Beispiel 3.)
Reparatur:
- Nein, die Eichfrist ist nach einer Reparatur erloschen.
Instandsetzung:
- Die Eichfrist erlischt nicht, wenn der Waageninstandsetzer sein Instandsetzerkennzeichen aufbringt. Der Instandsetzer garantiert so dafür, dass die Waage die Verkehrsfehlergrenze einhält. Des Weiteren muss der Instandsetzer unverzüglich eine Instandsetzermeldung an das zuständige Eichamt senden, und es ist der Antrag auf Eichung durch Ihre Firma zu stellen.
zu Beispiel 4.)

(2015/2019)
Entwicklung neuer Wägemethoden

Ziel war und ist es, auf neue Entwicklungen bei Fahrzeugen, aber auch bei Messgeräten einzugehen, neue Wägemethoden zu entwickeln und eine einheitliche Kontrollpraxis festzuschreiben und die Anerkennung vor Gericht sicherzustellen.

Bei Fahrzeugen im Großraum- und Schwertransport ist insbesondere im Bereich der Achssysteme die technische Entwicklung weiter fortgeschritten. Der Achsausgleich kann bei diesen Fahrzeugen auf mechanischer, hydraulischer oder pneumatischer Basis erfolgen, man spricht auch von „kommunizierenden“ Achsen.

Aufgrund der komplexen Technik ergeben sich hier zahlreiche Einwirkungsgrößen an diesen Systemen, welche die Bestimmung der Achslasten und Gesamtgewichte mittels Radlastmessern im statischen Betrieb erschweren oder gar unmöglich machen. Von Rechtsanwälten ist auch wiederholt vorgetragen worden, dass die Achslasten kommunizierender Achssysteme statisch nicht sicher ermittelt werden können. Verfahren wurden deshalb zum Teil eingestellt.

Für ein mögliches Zulassungsverfahren für mobile Waagen benötigt die Physikalisch-Technische Bundesanstalt (PTB) Messdaten von möglichst allen Fahrzeugvarianten, die im deutschen Straßenverkehr Anwendung finden.

An vier Tagen wurden in Dörverden mit Hilfe des Technischen Hilfswerkes (THW) auf dessen dortigem Wasserübungsgelände alle vom THW genutzten Fahrzeuge statisch und dynamisch verworfen. Hierbei wurden die mobilen Waagen mit verschiedenen Geschwindigkeiten und Beladungszuständen – beladen und unbeladen – „überfahren“.

Um Schwertransporte mit mehr als sechs Achsen testen und verweigern zu können, war viel mehr organisatorischer Aufwand und ein viel größeres Gelände erforderlich.

Mit Unterstützung eines Schwertransportunternehmens, das entsprechende Fahrzeuge bereitstellte, fand auf dem Gelände der Schwerlast Terminal GmbH in Wesel, an fünf Tagen eine „Mega-Verwiegung“ statt.

Elf Polizeikräfte, die mehr als 50 mobile Waagen aus ganz Deutschland zusammenzogen und vor Ort mehrere Wiegestationen bedienten, konnten so mit zusätzlicher Unterstützung der Eichbehörde in NRW, mehrere zehntausend Wägewerte ermitteln und bewerten.

Nach Dokumentation und Auswertung aller Daten durch die Arbeitsgruppe, wurden diese an die PTB zwecks dessen Bewertung weitergegeben. Und in Zusammenarbeit entstand dann auch der in dieser Wäge-Broschüre abgedruckte Leitfaden. (siehe Seite 21)
Kombinierte Wägung

Aus der polizeilichen Praxis heraus ergeben sich mit „großen“ Fahrzeugen (zum Beispiel Langholztransporte) häufig Probleme mit der Länge und dem Gesamtgewicht. Bei derartigen Transporten passen das Zugfahrzeug und der Nachläufer aufgrund der Gesamtlänge nicht zusammen auf die aktive Wiegefläche der meisten Brückenwaagen. Auch die Höchstlast dieser Brückenwaagen ist in vielen Fällen für derartige Schwervertrage nicht ausreichend.

Viele schwere Fahrzeuge, wie zum Beispiel Langholztransporte, können, alleinig auf einer Brückenwaage oder alleinig auf Radlastwaagen, nicht verwogen werden.

Die kombinierte Messung ist hier die Lösung

Gerüft wurde hier von der Projektgruppe die Möglichkeit, in diesen Fällen zum Beispiel die Zugmaschine auf eine Brückenwaage zu fahren und die Achsen des Nachläufers gleichzeitig außerhalb der Brückenwaage auf Radlastmesser zu stellen, um das Gesamtgewicht zu ermitteln.

Hier ist es nicht wichtig, dass die An- und Abfahrten zur Brückenwaage eben sind. Sie können höher oder tiefer liegen. Das Gewicht wird dann eventuell verlagert, aber in der Summe zeigt es immer das korrekte Gesamtgewicht.

Es gibt keinerlei Möglichkeit einer Gewichtsveränderung, die durch mögliche Verzögungen im Ergebnis zu einer Gewichtsveränderung führt.

Berücksichtigt werden müssen hier nur die Vorgaben bezüglich Aufstellungsbedingungen der Radlastwaagen.

Für die im Verkehrüberwachungsbereich zu beachtende Verkehrsfehlergrenze ist von dem angezeigten Wert der jeweils für die Waage(n) maßgebende Verkehrsfehlergrenze zu berücksichtigen, das heißt, werden eine Brückenwaage und mehrere Radlastwaagen eingesetzt, so ist die Verkehrsfehlergrenze der Brückenwaage und die jeweiligen Verkehrsfehlergrenzen der verwendeten Radlastwaagen von der ermittelten Gesamtmasse abzuziehen.

Überträgt man dies nun auf das Verwagen von Kraftfahrzeugen, so ist es möglich, das tatsächliche Gesamtgewicht eines Fahrzeuges ebenfalls mit mehreren Lastträgern zu ermitteln.

Es handelt sich hierbei auch nicht um „Achsweises Wägen“, sondern um die Wägung eines Fahrzeuges auf mehreren Waagenbrücken. Dieses Verfahren wird bereits seit Jahrzehnten bei Ver-
bundwaagen (zwei Waagenbrücken) angewandt. Der Unterschied ist lediglich, dass die Addition der Gewichtswerte dabei von der Waage automatisch ausgeführt wird.

Seitens der PTB wurde dieses Verfahren bereits als legitim angesehen. In einer Stellungnahme (Az.: PTB-1.12.-14.214 vom 09.12.2014) an die Amtsgerichte Neuwied und Linz am Rhein, zu dort anhängigen Verfahren, hat man sich wie folgt geäußert:

„Umfangreiche Vergleichsmessungen unter Aufsicht des Landesamtes für Mess- und Eichwesen Rheinland-Pfalz haben gezeigt, dass das Verfahren, die Gesamtmasse eines Fahrzeugs mithilfe einer geeichten Brückenwaage sowie gleichzeitig eingesetzten, geeichten Radlastwaagen zu bestimmen, zu vergleichbaren Ergebnissen wie eine vollständige Wägung auf einer ausreichend großen Brückenwaage führt.“

Auch gegenüber der Projektgruppe teilte die PTB mit, dass man grundsätzlich der Meinung sei, dass die Kombinationswägung der Wägung eines Fahrzeugs auf zwei Teilbrücken einer Fahrzeugwaage entspricht. Der Höhenunterschied zwischen Radlastmessern und Brückenoberfläche bei der Kombinationswägung kann man physikalisch als eine Verlagerung des Schwerpunktes der Last auf dieser Brückenwaage mit zwei Teilbrücken interpretieren, die aber keinen Einfluss hat, sofern das Fahrzeug sich vollständig und ausschließlich auf den Waagenbrücken abstützt.

Die durch die Projektgruppe gesammelten Ergebnisse untermauern diese Auffassung und belegen, dass die Kombinationswägung als gerichtsverwertbare Methode in der Praxis angewandt werden kann.

Dynamische Wägung

Anknüpfend an die in der Einleitung beschriebenen Probleme mit kommunizierenden Achssystemen, wurde innerhalb der Projektgruppe einvernehmlich festgestellt, dass eine optimale Wägung der beschriebenen Fahrzeuge möglichst dynamisch, das heißt in einer langsamen Überfahrt über die Radlastwaagen erfolgen sollte.

Für die Versuchsreihen wurde das Gesamtgewicht von verschiedenen Fahrzeugen in einem ersten Schritt mittels einer vorher eichamtlich geprüften Brückenwaage bestimmt, um diese anschließend dynamisch zu verwegen. Die dabei gewonnenen Messwerte wurden übergegertestet, um die Zuverlässigkeit und Reproduzierbarkeit der dynamischen Verwiegung zu beweisen.

Für die Versuchsreihen standen Fahrzeuge von drei bis zu 14 Achsen und einer Gesamtlänge von bis zu 30 Metern zur Verfügung. Es wurden Lkw mit Anhänger, Sattelzugmaschinen mit Sattelauflieger und Sonderfahrzeuge, wie zum Beispiel ein Mobilkran oder ein Wasserwerfer, zur Simulation flüssiger Lasten, genutzt.

Insgesamt wurden mehrere hundert Messfahrten zur Ermittlung dynamischer Messwerte durchgeführt.

Fortsetzung nächste Seite
Bei den Testverwiegungen der Projektgruppe wurden folgende konkrete Rahmenbedingungen festgelegt:

- Referenzgewichtsermittlung auf einer geeichten und kurz vorher erneut eichamtlich geprüften Brückenwaage
- Feststellung der Rad- bzw. Achslasten und Gesamtmasseermittlung durch statische Verwagung mit Radlastmessen
 - vorwärts / rückwärts
 - mit minimalem Pflichtausgleich (200-fache Bauhöhe der Radlastwaage) / Vollausgleich
 - auf ebener Fläche / Steigung / Gefälle
 - mit laufendem Motor / mit abgestelltem Motor
- Feststellung der Achslasten und der Gesamtmasseermittlung durch dynamische Verwiegung mit Radlastmessen
 - mit minimalem Pflichtausgleich / Vollausgleich
 - auf ebener Fläche / Steigung / Gefälle
 - Drehung der Radlastwaagen um 180 Grad
 - Drehung der Ausgleichsmatten um 180 Grad

(Anmerkung: Die Ausgleichsmatten verfügen an einem Ende über sogenannte Kabelführungshilfen. Liegen diese an der Radlastwaage an, so entsteht ein nicht ausgeglichener Raum zwischen Radlastwaage und Ausgleichsmatte. Wird die Matte um 180 Grad gedreht, so liegt diese plan an der Radlastwaage an. Ein benötigter Kabelkanal sollte an der „abfahrenden“ Seite liegen.)

Dieses Verfahren könnte mit Radlastwaagen des Herstellers HAENNI erfolgen (die auch bei den Tests genutzt wurden), die in einigen Bundesländern bereits zur Vorselektion von zu kontrollierenden Fahrzeugen im dynamischen Wägemodus eingesetzt werden.

Diese Typen sind aufgebaut als flache Waageplattform mit integrierter Elektronik, welche die gemessenen Werte in digitaler Form dem Datenbus zur Verfügung stellt.

Die durch einen Mikroprozessor gesteuerte Elektronik verarbeitet die Signale des Messorgans und des Temperatursensors und berechnet daraus das Gewicht, und, im Fall der dynamischen Wägung, auch die Geschwindigkeit, die Reifenabdruckleistung und den Abstand zur vorausgehenden Achse. Alle Werte sind über den Datenbus abrufbar. Dies
garantiert eine schnelle und zuverlässige Datenübertragung auf die Auswerteeinheit.

Beim Einschalten der Waage führt die Elektronik einen Selbsttest durch und setzt den Ge-
richtswert auf „Null“. Im weiteren Betrieb führt die Elektronik den Nullpunkt, falls notwendig,
selbsttätig nach, so dass eine Nullstellung von außen nicht notwendig ist.

Ein weiterer Vorteil dieser Waagentypen ist, dass mehrere Wägeplatten nahtlos aneinanderge-
reih werden können, so dass ein über die ganze Straßenbreite wirksamer Wägestreifen entsteht.
Auf diese Weise können auch Schwertransporte mit unterschiedlichen Spurweiten von Zugfahr-
zeug und Anhänger einfach gemessen werden.

Einziges Manko bisher, diese Waagen haben für den dynamischen Wägemodus noch keine Zu-
lassung.

Aufgrund der gesammelten Ergebnisse, die auch der PTB zur Bewertung vorliegen, ist abzuse-
hen, dass demnächst eine Bauartzulassungsprüfung erfolgen kann.

Um die weitere Richtungsweisung wird sich zudem die Projektgruppe eindringlich bemühen.

Auch wenn das Dynamische Wägen bislang nur als Vorselektion genutzt werden kann, führt
dies zumindest zu einer Zeiterleichterung bei Verkehrskontrollen. Denn nur Fahrzeuge, die dabei als „überladen“ gemessen werden, brauchen anschließend gerichtsverwertbar statisch gewogen we-

Quellen:
(2016/2019)
„Zusammenstellung der Ergebnisse von Versuchsreihenmessungen, in Köln (April 2016), in Dörverden (April 2018), in Wesel im Juli 2018 und September 2019, der bundesweiten Arbeitsgruppe – Radlastwägung –“, Verfasser EPHK Peter Hahmann, Leiter Zentrale Verkehrs-
dienste der Verkehrsdirektion Koblenz, Stand 09/2018.
„Beschreibung und Ergebnisse der Messungen beim LBME – Versuchsreihen beim Landesbetrieb Mess- und Eichwesen NRW in Köln am
5. und 6. April 2016 nach Auftrag der AG VPA zur Anpassung der – Anweisung zur Feststellung von Gewichten mittels Radlastmesser –
an die aus mehreren Bundesländern bestehende Arbeitsgruppe – Radlastwägung –“, Verfasser PHK Wolfgang Jaspers, Polizeipräsidium
Dortmund Direktion Verkehr – Verkehrsinspektion 3 Verkehrsdienst Autobahnpolizei, Stand 03.05.2016.
„Ermittlung von Gewichtswerten zur amtlichen Überwachung des Straßenverkehrs – Schreiben des Landesamtes für Mess- und Eichwes-
en Rheinland-Pfalz“, Verfasser Rigobert Biehl, Leiter Fachbereich 21 Waagen, Masse, ..., vom 03.05.2012.
„Ermittlung des Fahrzeuggewichtes durch Wägung auf Brückenwaage und Radlastwaagen; Kombinationswägung – Schreiben der Physi-
kalisch-Technischen Bundesanstalt“, Verfasser Karsten Schulz, PTB Arbeitsgruppe 1.12 „Waagen“ und 1.13 „Dynamisches Wägen“, vom
04.12.2015.
„Eigene Erkenntnisse des Autors Lars Forche“ (Referat Betriebsführung und Aufgabenvollzug / Recht / metrologische Überwachung /
Stabsstelle Öffentlichkeitsarbeit des Landesbetriebes Mess- und Eichwesen NRW) als Teilnehmer der Projektgruppe.

Fotos: Lars Forche Seite 53 bis 57

Anmerkung der Redaktion – „Kombinierte Wägung“ – eine Erläuterung

Die „Kombinierte Wägung“ von Kraftfahrzeugen, lässt sich gut am Beispiel von der Verwigung von Flug-
zeugen erläutern. Für große Flugzeuge wird sich kaum eine Brückenwaage mit einem Lastträger finden las-
sen, die die Anforderungen an Brückengröße und Höchstlast erfüllt. Bei diesem Anwendungsfall werden die
einzelnen Fahrgestelle des Flugzeugs auf einzelne Lastträger (Brücken) aufgefahren und das Gesamtgewicht
egibt sich als Summe der Einzelgewichte der jeweiligen Lastträger.

Überträgt man dies nun auf das Verwägen von Kraftfahrzeugen, so ist es möglich, das tatsächliche Gesamt-
egewicht eines Fahrzeuges ebenfalls mit mehreren Lastträgern zu ermitteln.

Befindet sich, zum Beispiel, die erste oder letzte Achse eines Fahrzeuges auf einer Achslastwaage (2 Radlast-
waagen mit oder ohne Zusammenschaltung (Verbund) und die übrigen Achsen auf einer Brückenwaage, so ist
das Gesamtgewicht die Summe der einzelnen Wägewerte.

Auch bei dieser Art der Wägung wird sie auf Grund von Verlagerung des Schwerpunktes der Gesamtlast
oder Schrägestellung des Fahrzeuges bei unterschiedlicher Höhe der einzelnen Wägenflächen, zu Querkraften
kommen, die sich unterschiedlich auf die einzelnen Achslasten des zu wiegenden Fahrzeuges auswirken.

Da sich das Gesamtgewicht des Fahrzeuges hierbei aber komplett auf mehrere Waagen abstützt, wird das
Gesamtgewicht korrekt ermittelt. Ein Rückschluss auf die einzelnen Achslasten ist jedoch nicht möglich.

Es handelt sich hierbei nicht umachsweises Wägen, sondern um die Wägung eines Fahrzeuges auf mehre-
ren Waagenbrücken. Dieses Verfahren wird bereits seit Jahrzehnten bei Verbundwaagen (Fahrzeugwaagen
mit zwei Waagenbrücken) angewandt. Der Unterschied ist lediglich, dass die Addition der Gewichtswerte hier
von der Waage automatisch ausgeführt wird.

Im Rahmen der Verkehrsüberwachung wird die zulässige Verkehrseffehlergrenze (VFG) je verwendeter Waage
als Abzug zu Gunsten des Betroffenen angesetzt, siehe Tabelle Seite 33. Gesonderte in der EG-Bauartzuläss-
sung festgelegte Fehlergrenzen müssen berücksichtigt werden.

Den Leitfaden zum Thema finden Sie auf Seite 21–23.
Indexverzeichnis

Beispiel:

<table>
<thead>
<tr>
<th>Index</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablesung</td>
<td>4, 14, 26, 48</td>
</tr>
<tr>
<td>Abweichung</td>
<td>6, 9, 14, 20, 32</td>
</tr>
<tr>
<td>achsweise*</td>
<td>19, 21−23, 25−27, 37−41, 44, 49, 51, 54, 57, 60+61</td>
</tr>
<tr>
<td>achsweises Wägen</td>
<td>19, 21−23, 25, 27, 37−41, 49, 51, 54, 57, 60+61</td>
</tr>
<tr>
<td>Anforderungen</td>
<td>4−10, 13, 16, 20, 23+24, 50, 57</td>
</tr>
<tr>
<td>Angehörige</td>
<td>15, 25+26</td>
</tr>
<tr>
<td>Anhänger</td>
<td>4, 15, 26+27, 30+31, 38, 40, 44−50, 55, 57, 60</td>
</tr>
<tr>
<td>Antragsteller</td>
<td>9, 16</td>
</tr>
<tr>
<td>Anwendungsbereich</td>
<td>5+6, 11+12</td>
</tr>
<tr>
<td>Anzeigepflicht</td>
<td>5, 7, 9</td>
</tr>
<tr>
<td>Aufbewahrung</td>
<td>9</td>
</tr>
<tr>
<td>Aufschrift</td>
<td>8, 12, 15, 23, 25, 38</td>
</tr>
<tr>
<td>Aufstellung</td>
<td>5, 13, 46</td>
</tr>
<tr>
<td>Ausgleichsmatte</td>
<td>28, 56</td>
</tr>
<tr>
<td>Ausnahmen</td>
<td>5, 9, 12, 14, 20, 26</td>
</tr>
<tr>
<td>Ausnutzung</td>
<td>9</td>
</tr>
<tr>
<td>Bedienungsanleitung</td>
<td>23</td>
</tr>
<tr>
<td>Begriffsbestimmungen</td>
<td>5+6, 21</td>
</tr>
<tr>
<td>Bereithaltung</td>
<td>25</td>
</tr>
<tr>
<td>Bereitstellung</td>
<td>5</td>
</tr>
<tr>
<td>Beruhigungsflächen</td>
<td>37−39</td>
</tr>
<tr>
<td>Beschaffenheit</td>
<td>9</td>
</tr>
<tr>
<td>Bescheinigung</td>
<td>15, 24, 51</td>
</tr>
<tr>
<td>Betriebspersonal</td>
<td>9, 15, 24−26</td>
</tr>
<tr>
<td>Bezeichnung</td>
<td>8, 17, 24+25</td>
</tr>
<tr>
<td>Bruttol*</td>
<td>26+27, 50</td>
</tr>
<tr>
<td>Brückenwaage</td>
<td>21+22, 24, 28, 32, 34, 36+37, 51, 54−57</td>
</tr>
<tr>
<td>Bundesanzeiger</td>
<td>5, 10, 14, 19+20</td>
</tr>
<tr>
<td>Bußgeld</td>
<td>5, 10, 27, 30+31, 43</td>
</tr>
<tr>
<td>Dolly-Achs*</td>
<td>42−44</td>
</tr>
<tr>
<td>Dynamisch</td>
<td>21, 23, 29, 53, 55−57</td>
</tr>
<tr>
<td>Eichfrist</td>
<td>5+6, 8+9, 12, 15, 17, 25, 32, 51+52</td>
</tr>
<tr>
<td>Eichkennzeichen</td>
<td>16−18, 25</td>
</tr>
<tr>
<td>Eichung</td>
<td>5+6, 8+9, 15−17, 25, 32+33, 46, 51+52</td>
</tr>
<tr>
<td>Einachs*</td>
<td>37+38, 40, 46, 49+50</td>
</tr>
<tr>
<td>Eingriff vorgenommen</td>
<td>8, 25</td>
</tr>
<tr>
<td>Einzelwägung</td>
<td>37+38, 40, 46</td>
</tr>
<tr>
<td>Entwertung</td>
<td>8</td>
</tr>
<tr>
<td>Entwicklung</td>
<td>53</td>
</tr>
<tr>
<td>EU-Waagen</td>
<td>19</td>
</tr>
<tr>
<td>fahrlässig</td>
<td>10, 16</td>
</tr>
<tr>
<td>Fahrzeugwaage</td>
<td>23, 25, 38, 46, 49, 55</td>
</tr>
<tr>
<td>Fehlergrenze</td>
<td>6−8, 13, 16, 19, 22, 32+33,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Funkgerät</td>
<td>51, 57, 60</td>
</tr>
<tr>
<td>Gebrauch</td>
<td>26, 37, 51</td>
</tr>
<tr>
<td>geeignet</td>
<td>5, 13, 23+24</td>
</tr>
<tr>
<td>Genauigkeitsklasse</td>
<td>4, 8+9, 12, 15+16, 25, 32, 37, 51+52, 55+56</td>
</tr>
<tr>
<td>Geschäftlich</td>
<td>4, 8, 10, 12+13, 36+37, 39</td>
</tr>
<tr>
<td>gesetzlich</td>
<td>19, 21, 32−34</td>
</tr>
<tr>
<td>gewährleistet</td>
<td>4, 6+7, 11, 19, 30, 50, 60</td>
</tr>
<tr>
<td>Gewichtsverlagerung</td>
<td>5+6, 8, 10, 27</td>
</tr>
<tr>
<td>gewissenhaft</td>
<td>4, 12, 14, 25, 27, 31</td>
</tr>
<tr>
<td>Grundlage</td>
<td>54</td>
</tr>
<tr>
<td>Handy</td>
<td>26, 37, 51</td>
</tr>
<tr>
<td>Hilfsmittel</td>
<td>8</td>
</tr>
<tr>
<td>Höhenunterschied</td>
<td>38, 55</td>
</tr>
<tr>
<td>Instandsetzung</td>
<td>8, 18, 52</td>
</tr>
<tr>
<td>Inverkehrbringen</td>
<td>5+6, 8, 12+13, 32+33, 51</td>
</tr>
<tr>
<td>Jahresangabe</td>
<td>17</td>
</tr>
<tr>
<td>Kennzeich*</td>
<td>4−9, 11−13, 15−18, 24, 26, 30, 51</td>
</tr>
<tr>
<td>Kennzeichen</td>
<td>4+5, 8, 15, 17+18, 26</td>
</tr>
<tr>
<td>Klebemarke</td>
<td>17+18</td>
</tr>
<tr>
<td>Kombinationswägung</td>
<td>55</td>
</tr>
<tr>
<td>kombinierte Wägung</td>
<td>21+22, 51, 55, 57</td>
</tr>
<tr>
<td>Konformität</td>
<td>6, 10, 12+13, 29, 32, 51</td>
</tr>
<tr>
<td>Kontroll*</td>
<td>9, 23, 26, 43, 52+53, 56, 61</td>
</tr>
<tr>
<td>Langholztransporte</td>
<td>54</td>
</tr>
<tr>
<td>Länge</td>
<td>11+12, 15, 48, 51, 54</td>
</tr>
<tr>
<td>Leitfaden</td>
<td>21, 27, 29, 37+38, 53, 57, 60</td>
</tr>
<tr>
<td>Messergebnis</td>
<td>6+7, 14, 27, 32, 50</td>
</tr>
<tr>
<td>Messgerät</td>
<td>4−17, 19+20, 32, 50, 53</td>
</tr>
<tr>
<td>Messgröße</td>
<td>5, 7+8, 11+12, 14, 20, 25, 50</td>
</tr>
<tr>
<td>messtechnisch</td>
<td>8, 16, 25, 52</td>
</tr>
<tr>
<td>Messung</td>
<td>4, 6+7, 9, 14, 32, 46, 49+50, 53</td>
</tr>
<tr>
<td>Messwert</td>
<td>55</td>
</tr>
<tr>
<td>Mindestlast</td>
<td>4−10, 12, 14, 20, 23, 50+51, 55</td>
</tr>
<tr>
<td>Mitwirkung</td>
<td>27, 34−37, 39, 46−51</td>
</tr>
<tr>
<td>Nachweis</td>
<td>9</td>
</tr>
<tr>
<td>nichtselbsttätig</td>
<td>5, 9+10, 15, 25</td>
</tr>
<tr>
<td>Niveaualtersicht</td>
<td>12+13, 19, 21, 25, 32, 51</td>
</tr>
<tr>
<td>Niveaualtersicht</td>
<td>23, 28, 61</td>
</tr>
<tr>
<td>öffentlich</td>
<td>22, 60</td>
</tr>
<tr>
<td>ordnungswidrig</td>
<td>5, 10, 16, 27</td>
</tr>
<tr>
<td>Pflicht</td>
<td>4+5, 9+10, 14+15, 19, 56</td>
</tr>
<tr>
<td>Plombe</td>
<td>17+18</td>
</tr>
<tr>
<td>Prüfung</td>
<td>5+6, 9, 16, 23+24, 32, 38</td>
</tr>
</tbody>
</table>
Änderungen/Ergänzungen in der BTE-Wäge-Broschüre 2019 gegenüber der Ausgabe 2017.2

<table>
<thead>
<tr>
<th>Änderung / Ergänzung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Änderungen in der BTE-Wäge-Broschüre 2019 gegenüber der Ausgabe 2017.2</td>
<td>59</td>
</tr>
</tbody>
</table>

Erläuterungen zur Benutzung des PDF-Dokumentes

Mit dem Acrobat-Reader funktioniert die Suche nicht immer, aber mit Sumatra PDF. – Sumatra PDF ist ein schlanker, freier, open-source PDF-Betrachter (https://www.sumatrapdfreader.org).
Vorbemerkungen

Ein Arbeitsausschuss von Fachleuten der Eichbehörden und der Polizei hat in Übereinstimmung mit der PTB diesen Leitfaden erstellt. Er entspricht den anerkannten Regeln der Technik.

1 Grundsätzliches

Bei achsweisen Wägen besteht durch die Last (Fahrzeug) eine Verbindung zwischen beweglicher Waagebrücke und fester Umgebung.

Damit entstehen zusätzliche Einflüsse auf die Wägeergebnisse:

1. seitens der Waage
 - Überschreitung der Fehlergrenzen durch Querkräfte,

2. seitens des Fahrzeugs
 - durch unterschiedliche Einschwingzustände oder sich ändernde Verzwängungen in der Achsaufhängung,

3. seitens der An- und Abfahrten
 - durch Niveaunterschiede zwischen Waagebrücke und An- und Abfahrt, die zur Änderung der Achslastverteilung von Wägung zu Wägung führen.

2 Achsweises Wägen auf Straßenfahrzeugwaagen

2.1 Geschäftlicher und amtlicher Verkehr; ausgenommen Verkehrsüberwachung

Außer zur Verkehrsüberwachung darf das Gesamtgewicht eines Fahrzeugs nur aus zwingenden technischen Gründen, zum Beispiel zu kurze Waagebrücke oder zu geringe Höchstlast der Waage, durch achsweises Wägen ermittelt werden.

Die nachfolgenden Bedingungen sind einzuhalten:

2.1.1 Die An- und Abfahrt zur Waagebrücke muss im zur Wägung notwendigen Verschiebebereich des Fahrzeugs mit der Waagebrücke auf gleicher Höhe liegen sowie gerade, eben und waagerecht ausgeführt sein.

2.1.2 Das Gesamtgewicht eines Fahrzeugs darf nur aus zwei Teilwägungen ermittelt werden; Achsgruppen (Mehrfachachssaggregate) sind dabei in einer Wägung zu wägen. Sattelfahrzeuge (Sattelzugmaschine und Sattelanhänger) gelten als ein Fahrzeug. Lastzüge (Lkw und Anhänger) sind als getrennte Fahrzeuge zu behandeln.

2.1.3 Das Fahrzeug muss gerade auf die Waage aufgefahren werden und unbegrenzt sein. Die zu wägende Achse oder Achsgruppe soll möglichst in der Mitte der Waagebrücke positioniert werden.

2.1.4 Die Ladung darf sich während der gesamten Wägedauer nicht verlagern können. Bei flüssigem Wägegut ist achsweises Wägen unzulässig.

2.1.5 Die Wägergebnisse sind mit der Angabe „Achsweise gewogen“ zu versehen.

2.1.6 Sind die baulichen Voraussetzungen nach Nr. 2.1.1. nicht gegeben, so ist außen in unmittelbarer Nähe der Waagenbrücke ein Schild mit zum Beispiel folgendem Text anzubringen:

„Achsweises Wägen ist ausnahmslos nicht gestattet. Beim Wägen von Lastzügen muss der Teil, der auf der Waagenbrücke steht, von dem anderen Teil abgekuppelt sein."

Die Mindestschriftgröße beträgt 30 Millimeter.

2.2 **Achsweises Wägen auf Straßenfahrzeugwaagen zur Verkehrsüberwachung**

2.2.1 Es gelten die Bedingungen aus 2.1 mit folgender Änderung: Bei der Ermittlung von Achslasten entfällt 2.1.2 (*mehr als zwei Teilwägungen zur Verkehrsüberwachung zulässig*). Einzelachslasten von Achsaggregaten sollen jedoch nicht ermittelt werden.

2.2.2 Für die Abschätzung der größten möglichen Messabweichung (Gesamtfehler), die sich zu Ungunsten des einer Überladung Beschuldigten auswirken kann, ist das „Grundsatzgutachten der PTB zur Verwägung von Straßenfahrzeugen“ (PTB-Mitt. 5/1984, Seite 344) heranzuziehen.

Auszug aus dem Gutachten:
Die Abschätzung des möglichen positiven Gesamtfehlers, der sich gegebenenfalls zu Ungunsten des einer Überladung Beschuldigten auswirkt, ergibt:

- für zweiachsige Fahrzeuge 1,8 Prozent des ermittelten Gesamtgewichts,
- für Fahrzeuge mit mehr als zwei Achsen 2,7 Prozent des ermittelten Gesamtgewichts.

3 **Achsweises Wägen mit Radlastwaagen zur Verkehrsüberwachung im amtlichen Verkehr**

3.1 Der Einsatz von Radlastwaagen ist nur paarweise gegenüberliegend aufgestellt zulässig (Achslastwägung).

3.2 Niveauausgleich über die ganze Fahrzeugglänge (zum Beispiel durch Fahrstege) ist zur Minimierung von Messfehlern grundsätzlich anzustreben. Er kann entfallen

- bei Fahrzeugen mit nur zwei Achsen, da hier nur eine vernachlässigbare Messabweichung zugunsten des Kontrollierten entsteht,
- bei Fahrzeugen mit mehr als zwei Achsen, wenn der Abstand zwischen der (den) Achse(n) auf den Radlastwaagen und der nächstliegenden nicht gewogenen Achse gleich oder größer ist als die 200-fache Bauhöhe der Radlastwaagen.

Der Verschiebebereich des Fahrzeugs während der Wägungen muss gerade sein und in einer Ebene liegen.

3.3 Im Beanstandungsfall Zweitwägung mit Auffahrt in entgegengesetzter Richtung (vor- bzw. rückwärts) durchführen und die Ergebnisse unter (zum Ausgleich von möglichen Verzügen im Fahrwerksystem). Dabei kann die Zweitwägung unmittelbar nach der Erstwägung der betreffenden Achse vorgenommen werden, indem das Fahrzeug etwa 0,5 Meter vorgezogen und anschließend wieder auf die Radlastwaagen zurückgesetzt wird. Starkes Abbremsen ist zu vermeiden.

3.4 Wägungen sind mit gelöster Bremse durchzuführen und bei Antriebsrädern darf kein Gang eingelegt sein. Gegebenenfalls eine nicht gewogene Achse mit Unterlegkeilen sichern.

3.5 Bei Mehrfachachsaggregaten (Achsgruppen) alle Achsen des Aggregats gleichzeitig wägen. Steht nur ein Radlastwaagenpaar zur Verfügung, ist im Beanstandungsfall wie unter 3.3 zu verfahren.

3.6 Es gelten die Bedingungen aus 2.1.4 (*Die Ladung darf sich während der gesamten Wäge- dauer nicht verlagern können. Bei flüssigem Wägegut istachsweises Wägen unzulässig.*).

3.7 Das Gesamtgewicht des Fahrzeugs kann durch Addition der Achslasten berechnet werden.

3.8 Im Beanstandungsfall sind die Ergebnisse der einzelnen Wägungen um die zulässige Verkehrsfehlgrenze der Radlastwaage entsprechend der Belastung zu reduzieren.
Radlastwaagen und Ausgleichsmatten

© Wolfgang Jaspers

Links: Wägung auf einer Radlastwaage, das linke Rad/Achse steht auf einer Ausgleichsmatte © HPA-F3

Rechts: Auffahrt auf die Radlastwaage © Wolfgang Jaspers

Radlastwaagen und Ausgleichsmatten

< vollständiger Höhenausgleich aller Achsen teilweiser Höhenausgleich der Achsen >

© Wolfgang Jaspers

Digitalanzeige einer Radlastwaage

© Bernd Schmidt

Eichwert (e)
In Masseneinheit ausgedrückter Wert der Teilung, der bei der Eichung der Waage unter anderem zur Festlegung der Fehlergrenze zugrunde gelegt wird.

Die Bedeutung der Kennzeichen

© Wolfgang Jaspers

(Ausführung nur zulässig bis 19. April 2016)

Hinweismarke zum Ablauf der Eichfrist

oben: Radlastwaagen-System mit Funkübertragung – gleichzeitige Messung bei Belastung aller Räder (EVOCAR) © Marco Mylius

links: Wägung auf einer Radlastwaage, das linke Rad/Achse steht auf einer Ausgleichsmatte © HPA-F3

rechts: Auffahrt auf die Radlastwaage © Wolfgang Jaspers